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1 Introduction

Lattice regularization of non-abelian gauge theories has provided many insights into the
non-perturbative properties of the quantum field theory underlying the strong force, known
as Quantum Chromodynamics (QCD). For instance, now that dynamical quarks can be
treated via the use of powerful supercomputers, the meson and hadron spectra are on the
whole in remarkable agreement with experimental data. One current problem of interest
for lattice regularization is the measurement of Green’s functions relevant for, say, deep in-
elastic scatttering. For instance, whilst the perturbative renormalization of the underlying
twist-2 flavour non-singlet and singlet operators are known to three loop accuracy in the
MS scheme, [1–7], the associated matrix elements are also required but they can only be
fully computed using non-perturbative methods. These are crucial to fully understanding
the structure functions of the original hadrons and mesons which are broken up in deep
inelastic experiments. Such matrix elements are, however, accessible via lattice regulariza-
tion with notable progress through the years via collaborations such as QCDSF, [8–13],
and others, [14–17]. However, such measurements of Green’s functions on the lattice need
a variety of techniques to allow comparison with continuum results. Therefore, we will first
briefly discuss some of the relevant issues in a general context before formulating the aims
for the current article.

The first issue is that the lattice computations necessarily renormalize their operators
and Green’s functions using a renormalization scheme which is not the standard MS one.
The general name for the scheme we refer to in this context is regularization invariant
(RI), [18]. Though in practice the main scheme used is referred to as RI′. (In some articles
this is synonymous with RI-MOM.) Therefore, one needs a means to convert lattice results
from RI type renormalization schemes to the reference scheme of MS, [18, 19]. For certain
classes of Green’s functions the continuum definition and use of RI′ (and RI) have been
given in three and four loop renormalization of (massless) QCD in arbitrary covariant
gauges, [20–23]. The second main issue to deal with is that of matching lattice regularized
results for the Green’s functions with the corresponding continuum results. There are two
main approaches for this. The first is the Schrödinger functional method, [24, 25], upon
which we make no further comment. The second is the matching to explicit perturbative
QCD results for the same Green’s function which is what we concentrate on here. In this
approach, [18–23], the main ethos is to compute the Green’s function to as high a loop
order as possible in perturbation theory as a function of the gauge coupling constant, g.
Then the lattice computation should match on to the continuum behaviour in the same
renormalization scheme in the high energy limit. Having a perturbative result to as high a
loop order as is calculationally feasible will in principle lead to a more accurate extraction
of numerical values for the Green’s function in the non-perturbative range of interest for,
say, nucleon structure functions.

As already indicated, previous work in the continuum concentrated on a variety of
gauge invariant twist-2 flavour non-singlet operators, O, and the perturbative evaluation
of the flavour non-singlet Green’s function 〈ψ(p)O(0)ψ̄(−p)〉 in the chiral limit, [20–23],
where p is the momentum flowing through the Green’s function and ψ is the quark field.
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The operators considered for this Green’s function were the Wilson and the transversity
operators to and including moment n = 3 and 4 respectively and various quark bilinear
operators such as the tensor current, [21–23]. However, whilst such results were useful
in many ways, they suffer from one major drawback. This is simply stated by noting
that although each of the operators considered was gauge invariant, the Green’s function
itself was gauge dependent. Although ultimately one was only interested in the Landau
gauge, the results of [21–23] were provided in an arbitrary linear covariant gauge. Whilst
this was not too problematic for continuum calculations, from the point of view of lattice
regularization one has also to fix the Landau gauge. However, this is a tough exercise in
itself and in principle could open up reliability issues to do with say ensuring the Gribov
problem was avoided. To circumvent these lattice regularization gauge fixing issues another
approach has been devised.1 Briefly to extract the appropriate renormalization constants
for the operators and hence determine the finite parts of the Green’s functions, the approach
is to consider gauge independent correlation functions of gauge invariant operators. In this
way the potential gauge fixing ambiguity never becomes an issue in the first place since
the gauge does not then need to be fixed on the lattice. More specifically the appropriate
correlation function to consider is 〈O(p)O(−p)〉. However, for, say, high moment Wilson
operators the increase in the number of covariant derivatives may lead to too noisy a
numerical signal for extraction of meaningful values of the Green’s function. Hence, rather
than consider this diagonal correlation function, a simple proposal would be to analyse an
off-diagonal correlator such as 〈O1(p)O2(−p)〉 where O1(p) is a Wilson operator, say, and
O2(p) is a simple quark bilinear current operator. This has to be chosen in such a way
that the Green’s function is not simply trivial in the chiral limit. However, information on
the Wilson operator renormalization constant can still be derived.

Having reviewed the background and key issues we now indicate the main aim of this
article. It is to simply to provide the explicit values of the appropriate operator corre-
lation functions, 〈O1(p)O2(−p)〉, relevant to the lattice problem to as many loop orders
in perturbation theory that is calculationally feasible. Specifically we will focus on three
sets of flavour non-singlet operators used in deep inelastic scattering. These are the Wilson
operators with moments 2 and 3 and moment 2 of the set of transversity operators. Several
correlations of the operator with itself will be provided as well as the appropriate non-zero
off-diagonal one. We will present results to third order or three loops in the MS scheme
as a function of the momentum flowing through the 2-point function. We note that whilst
we compute three loop Feynman diagrams, since it is clear that the leading diagram of
the correlator is independent of the strong coupling constant, a, then the results will be
to O(a2) inclusive where a = g2/(16π2). However, it will also become evident that it is
not possible to consider correlators of higher moment operators and expect to evaluate
the correlation functions to the same three loop order. Whilst our main motivation is to
provide the finite parts of these correlation functions several technical issues need to be
addressed to obtain the correct answers. For instance, there is an assumption that the

1The author is grateful to Dr P.E.L. Rakow and Dr R. Horsley for their patient enlightment on this

point.
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flavour non-singlet Wilson and transversity operators do not mix under renormalization.
It will turn out that this observation needs to be clarified within the present context.
Their three loop MS anomalous dimensions are available, [1–7], and the lower loop results
were originally obtained by considering the renormalization of 〈ψ(p)O(0)ψ̄(−p)〉. In this
momentum configuration the mixing is not relevant. However, in the momentum config-
uration for the correlators of the present article 〈O1(p)O2(−p)〉, since a momentum flows
through the operator the mixing is relevant and cannot be neglected. Suffice to say at this
point that the additional operators are gauge invariant but total derivatives. Therefore,
as part of our correlator renormalization programme we have had to compute the relevant
anomalous dimension mixing matrices to allow us to extract consistently renormalized cor-
relation functions. Such results will no doubt be important for other areas of deep inelastic
scattering such as generalized parton distribution function analyses.

The article is organised as follows. Section 2 introduces the notation, operators and
general features of the correlation functions we consider throughout. The general renor-
malization properties of the underlying correlation functions are discussed in section 3
including the operator mixing issue. Section 4 is devoted to the very mundane but impor-
tant exercise of recording all the results for the Green’s functions we have considered. As
a spin-off we record the R-ratio for the tensor current to third order in section 5. Finally,
after concluding remarks in section 6, several appendices are provided. The first records
the Lorentz tensor decomposition of several operator correlators. This is necessary since
the lattice requires the use of operators with uncontracted indices. In the renormaliza-
tion of the matrix elements 〈ψ(p)O(0)ψ̄(−p)〉 of [1–3], the Lorentz indices were contracted
with a null vector ∆µ with ∆2 = 0. This was because, for example, the Wilson operators
were traceless and symmetric and this contraction excluded the part with metric tensors
in order to ease the extraction of renormalization constants directly. Here, since we will
use a very specific computer algebra package and algorithm which only operates on scalar
Feynman integrals, we need to project out the relevant scalar amplitudes with respect to
some tensor basis, which is, of course, not unique. This is discussed in appendix A. The
remaining appendix records the explicit numerical values of the various finite parts of the
correlation functions for the colour group SU(3) which were originally presented in exact
form to O(a2) in section 4.

2 Preliminaries

In this section we define our notation and operators and discuss the operator correlation
functions from a general perspective. Throughout we use the standard QCD Lagrangian
with massless quarks to immediately put us in the chiral case and an arbitrary linear co-
variant gauge fixing which is parametrized by the (renormalized) parameter α. However,
since our correlation functions involve gauge invariant operators and therefore are gauge
independent, α will never actually appear in any of our final correlator expressions. Though
we stress that at no stage have we set α = 0 internally in our computations. Its natural
cancellation is a strong internal consistency check on the construction of, say, our Feyn-
man rules and the operator renormalization. Given this we define the general correlation
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Figure 1. Operator correlation function 〈Oi(q)Oj(−q)〉.

function as, [26–28],

Πij
µ1...µniν1...νnj

(q2) = (4π)2i
∫

ddx eiqx〈0|Oiµ1...µni
(x)Ojν1...νnj

(0)|0〉 (2.1)

where q is the momentum (with q2 = − Q2) and we have labelled the Lorentz indices of
the respective constituent operators by a different parent Greek letter for clarity. At this
point it is worth noting that we closely follow the procedures of [26–28] which are excellent
reviews of calculating (2.1) for quark current operators. The Green’s function itself is
illustrated schematically in figure 1 with the momentum flow made explicit. Our notation
needs explanation. We use superscripts i and j to denote the left and right operators O
of the correlation function as indicated in figure 1 where the momentum flows into the left
operator and out through the right operator. In principle, these operators are different
whence the two distinct sets of Lorentz indices {µi} and {νj}. Though for some cases
we will include the quark mass operator which has no Lorentz tensor structure and so no
such indices will be formally required. The flavour indices have been omitted to avoid
cluttering the notation further. It is understood that there is a flavour generator included
within each operator and later we will note the internal accounting method used to ensure
that we derive results only for the correlation of flavour non-singlet currents as opposed to
flavour singlet currents. For the latter there would be an additional but different operator
mixing problem from that into total derivative operators. This singlet mixing is already
well documented, [1–3]. In other words flavour singlet quark blinear current operators
can mix into purely gluonic operators with the same twist and quantum numbers, as well
as gauge variant operators with the same properties but constructed from, say, Faddeev-
Popov ghost fields. Moreover, one would also have to handle equation of motion operators
too. We mention this aspect for completeness and note that as far as we are aware there is
currently no lattice proposal to examine the flavour singlet case and we therefore will not
devote any time to it here in the analogous continuum problem.

Since we will consider a variety of operators we introduce a shorthand notation, akin
to [26–28], for the superscripts i and j to indicate which operator appears in (2.1). These
are listed below as

S ≡ ψ̄ψ

V ≡ ψ̄γµψ

T ≡ ψ̄σµνψ

W2 ≡ Sψ̄γµDνψ

– 5 –
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∂W2 ≡ S∂µ
(
ψ̄γνψ

)
W3 ≡ Sψ̄γµDνDσψ

∂W3 ≡ S∂µ
(
ψ̄γνDσψ

)
∂∂W3 ≡ S∂µ∂ν

(
ψ̄γσψ

)
T2 ≡ Sψ̄σµνDσψ

∂T2 ≡ S∂µ
(
ψ̄σνσψ

)
(2.2)

where S denotes the appropriate symmetrization in the Lorentz indices as well as the
operator’s tracelessness which we will discuss shortly. This list already reveals our hand in
terms of the operator mixing issue. Moreover, in choosing this notation we have disguised
to a degree what some of the total derivative operators are. However, we choose to work
within certain sectors. By this we mean, using the Wilson operator of moment 3 for
illustration, that W3 is the main label for that sector as well as being the parent operator.
In its renormalization it spawns offspring total derivative operators denoted by one or more
∂ symbols. These are labelled ∂W3 and ∂∂W3. However, clearly from (2.2) these derive
from the parent W2 operator of the preceding or lower sector and the vector current of
the first sector. It therefore might have been apt to choose the respective notation for
these to be ∂W2 and ∂∂V for labels. We have chosen not to do so because for the W3

sector the number of Lorentz indices are the same on each combination of these operators.
Moreover, one would have to count the derivative labels to deduce which sector the label
was associated with. Hence the Lorentz projection tensors used to project out the scalar
amplitudes we will compute are the same for these combinations. So for the W3 sector
there is only one basic projector. Whilst this means we will use W3 as both an operator
label and sector indicator, this we believe will minimize the confusion in choice of notation
when trying to ascertain which sector, say, ∂V belongs to especially when transversity is
dealt with in parallel calculations.

Next in (2.2) we choose the symmetrization with respect to Lorentz indices and the
tracelessness conditions in the standard way. For transversity, which involves the γ-matrix
commutator σµν = [γµ, γν ], the definition is not the same as for the Wilson operators, [29–
31]. For the three moments we consider, the explicit definitions of the symmetric traceless
operators are, in d-dimensions,

SOW2
µν = OW2

µν + OW2
νµ −

2
d
ηµνOW2 σ

σ

SOW3
µνσ = OW3

S µνσ −
1

(d+ 2)

[
ηµνOW3 ρ

S σρ + ηνσOW3 ρ
S µρ + ησµOW3 ρ

S νρ

]
OW3
S µνσ =

1
6
[
OW3
µνσ + OW3

νσµ + OW3
σµν + OW3

µσν + OW3
σνµ + OW3

νµσ

]
SOT2

µνσ = OT2
µνσ + OT2

µσν −
2

(d− 1)
ηνσOT2 ρ

µρ +
1

(d− 1)

[
ηµνOT2 λ

ρλ + ηµρOT2 λ
νλ

]
(2.3)

where

OW2
µν = ψ̄γµDνψ

– 6 –
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OW3
µνσ = ψ̄γµDνDσψ

OT2
µνσ = ψ̄σµνDσψ (2.4)

which are clearly consistent with the definitions in [21–23]. We note that OW3
S µνσ is the

intermediate definition of the symmetrized operator. As in [21–23] we have derived the
d-dimensional versions. Although the lattice computations are in strictly four dimensions,
we will dimensionally regularize in d = 4 − 2ε dimensions where ε plays the role of the
regularizing parameter. The renormalization constants will have a Laurent series in ε when
subtracted in the MS scheme. The main calculational tool is the use of the Mincer al-
gorithm derived in [32]. It is ideal for the present work as it evaluates massless 2-point
Feynman diagrams to the finite part at three loops in dimensional regularization. The
correlation function (2.1) clearly falls into this category and does not require infrared re-
arrangement or external momentum nullification. More practically the Mincer algorithm
has been encoded in the powerful symbolic manipulation language Form, [33], in [34],
which therefore allows for a fully automated computation. For instance, once the Feynman
rules for the operators are derived consistently then the algorithm is applied to produce the
finite parts. Crucial to this is the electronic generation of the Feynman diagrams via the
Qgraf package, [35]. These are then converted into Form input notation for application
of the Mincer algorithm by systematically including the Lorentz and colour indices for
the gluon, quark and Faddeev-Popov ghost fields. For the present calculation there are
1 one loop, 8 two loop and 109 three loop Feynman graphs to be evaluated in principle
for every combination of operators in (2.2) we consider here. These totals include graphs
where there are two covariant derivatives in each operator as occurs for the W3 sector. In
the Qgraf generation of graphs we restrict the diagrams to the one particle irreducible,
no tadpole and no snail set-up since we are dealing with massless fields. So, for example,
there are no closed gluon loops at the location of an operator. Such graphs are trivially
zero in dimensional regularization but may arise in, say, a lattice regularization. That
aside, when, for example, ∂∂W3 is part of the correlator the majority of the 109 three
loop graphs will in fact be trivially absent. For practical purposes it is best to have the
most general set of diagrams for the full calculation rather than design Qgraf routines
for specific cases and potentially omit graphs which contribute. By the same token the
presence of the covariant derivatives in the W3 sector means that the explicit evaluation is
slowed significantly on the available computers. Therefore, when this occurred we chose to
run each Lorentz projection individually in series, which improved run times substantially.
Given this we note the final aspect of our notation and that is the decomposition of the
correlation function into the explicit scalar amplitudes, Πij

(k)(q). These are defined by

Πij
µ1...µniν1...νnj

(q2) =
nij∑
k=1

P ij(k){µ1...µni |ν1...νnj }
(q) Πij

(k)(q) (2.5)

where P ij(k){µ1...µni |ν1...νnj }
(q) are the Lorentz projectors. The subscript (k) (and also (l)

later) label the sector. How these projectors are derived and their explicit forms are
relegated to appendix A. However, we note the number of projectors for each of the eight

– 7 –
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ij S, S V, V T, T V,W2 V,W3 W2,W2 W3,W3 T, T2

nij 1 2 2 2 2 3 4 4

Table 1. Number of projectors for each correlation function sector.

correlation function sectors we focus on here, nij , is given in table 1. Clearly the number
of projectors increases with the number of free Lorentz indices. Given this decomposition
then to find each individual scalar amplitude Πij

(k)(q) we multiply (2.5) by the appropriate
element of the inverse projection tensor which is defined for each sector in appendix A. It
is then this Lorentz scalar object which is put through the Mincer algorithm.

As is usual with a renormalizable quantum field theory each amplitude is divergent.
To extract the explicit divergence we follow the algorithm of [36] derived from automatic
multiloop computations. In general terms, one computes the Green’s function as a function
of bare parameters. Then the renormalized variables are introduced by the simple rescal-
ing definition. For example, for the bare and renormalized coupling constants go and g

respectively, we use go = gZg where Zg is the coupling constant renormalization constant.
Though in dimensional regularization we will use go = µεgZg where µ is the arbitrary
renormalization scale present due to the regularization. Here the explicit renormalization
constants for the operator correlation functions are derived and discussed at length in the
next section where the associated renormalization constants are also constructed. It suf-
fices to say at this point that there is an extension to the algorithm of [36] in that the
bare operators in the Green’s function have to be rescaled to their renormalized operator
without neglecting the mixing into other operators. Moreover, the explicit forms of the
gauge independent operator correlation function renormalization constants are equally as
important as the finite parts of the correlators from the point of view of assisting with the
matching of lattice results to the corresponding continuum values in the high energy limit.

There is one concern with relation to the topology of the graphs which needs to be
addressed. That is that we need to ensure that within our computer programmes we are
in fact calculating the correlation functions of flavour non-singlet operators as opposed
to flavour singlet ones. For instance, without the presence of a flavour matrix of some
sort graphs which have a closed quark loop and only include one of O1 or O2 but not
both together must be set to zero. If not it would be a contribution to a flavour singlet
operator correlator. Therefore, whilst we have formally omitted flavour indices in the
definition (2.1), our Feynman rules for the operators actually include a flavour matrix for
each operator. Denoting this by λi where i labels the left operator 1 or right operator 2,
then at an appropriate point of the computation terms with tr

(
λ1
)

tr
(
λ2
)

are set to zero
to only leave terms proportional to tr

(
λ1λ2

)
. This is then formally set to unity since it

flags the flavour non-singlet contribution uniquely.
Finally, we comment on how we have chosen the correlation functions presented here.

The set we consider is listed in table 1. First, our choice is motivated by ensuring that
the corresponding lattice calculation has a minimal set of covariant derivatives to handle.
Second, we are constrained by the masslessness of the problem. For instance, as is clear

– 8 –
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from figure 1 and (2.1) we are dealing with closed quark loops. Therefore, one must have
an even number of γ-matrices. As the quarks are massless and each quark propagator
has exactly one γ-matrix the sum of γ-matrices present in both operators of (2.1) has to
be even. Therefore, whilst from a lattice point of view it would be simple to have the
quark mass operator as the off-diagonal element for the W2 and W3 sectors this correlator
is trivially zero. In other words in the presence of quarks with generic mass mq then the
correlator will vanish as O(mξ

q) where ξ > 0. Hence, for W2 and W3 they have to be
paired with V . Similarly as T2 involves σµν one requires an even number of γ-matrices
for the other operator of the correlator. Naively one would assume that this natural
pairing would be with S. However, that leaves free Lorentz indices only on one operator
and for T2, given the symmetry properties of the operator itself via σµν , it is not in fact
possible to decompose the correlator into Lorentz tensors built from the metric tensor,
ηµν , and the momentum, qµ. Therefore, we have had to pair T2 with T . Whilst these
off-diagonal operators will probably be the ones of most interest to lattice computations
we have chosen to consider the diagonal sectors {W2,W2} and {W3,W3} as well. There are
several reasons for this. With a second avenue available to extract information on all the
W2 and W3 sector renormalization constants used for the lattice, these will actually give
useful consistency checks provided sufficient computation power is available for the lattice
calculations. Next, the operator mixing issue is a novel feature of these correlators and we
choose to consider them to ensure that we have obtained the correct overall picture of view
from a calculational and renormalization point of view. A final, less firm, motivation is that
the diagonal correlators of quark bilinear currents are useful to derive decay rates via the
R-ratio formalism. (See, for example, [26–28].) Whilst those for W2 and W3 are tenuous
in this respect, and we take them no further than finding the amplitudes, we do evaluate
{T, T} for this reason and construct the corresponding R-ratio for the tensor current as a
by-product of our full computation.

3 Renormalization group

In this section we concentrate on general aspects of the renormalization of the operators
we are interested in, (2.2), and the construction of the renormalization group equations
satisfied by the renormalized operator correlation functions. There are essentially two parts
to this. The first relates to the operator mixing which is a separate exercise unrelated to
the correlation functions, whilst the second is an application of the mixing property.

For the operator mixing issue we note first that the quark current operators S, V
and T are clearly multiplicatively renormalizable in the chiral limit and mass independent
renormalization schemes. Therefore, we concentrate on the three sectors W2, W3 and T2

and justify our choice of operator basis. The first and last of these are similar, so we will
specifically consider W2 and W3. First, for W2 we note that the usual Lorentz symmetric
and traceless twist-2 flavour non-singlet operator used in deep inelastic scattering is

OW2
µν = Sψ̄γµDνψ . (3.1)

– 9 –
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This is not independent since one can of course add the independent operator S
(
Dνψ̄

)
γµψ

to the set of operators with the same symmetry properties. However, we want to make use
of known renormalization results for OW2

µν , [1–7, 37, 38], and using the latter noncanoni-
cal operator, whilst not difficult from a technical point of view, is not the only operator
independent of it. Instead the operator

O∂W2
µν = S∂µ

(
ψ̄γνψ

)
(3.2)

is independent of W2 and with ∂W2 and W2 we can obtain S
(
Dνψ̄

)
γµψ as a linear com-

bination. Likewise for the T2 sector the analogous basis is

OT2
µνσ = Sψ̄σµνDσψ

O∂T2
µνσ = S∂µ

(
ψ̄σνσψ

)
. (3.3)

At the next sector higher one now has an object with three Lorentz indices and so one would
expect three independent operators. Again we wish to retain the renormalization properties
of the parent operator which means choosing the basis as {W3, ∂W3, ∂∂W3} where

OW3
µνσ = Sψ̄γµDνDσψ

O∂W3
µνσ = S∂µ

(
ψ̄γνDσψ

)
O∂∂W3
µνσ = S∂µ∂ν

(
ψ̄γσψ

)
. (3.4)

Clearly the latter two are total derivatives of the set {W2, ∂W2} and if one were to extend
to the next sector level that set would involve the parent W4 and the total derivatives of
the W3 sector. From the explicit calculation of the operator anomalous dimensions there
is an important computational advantage from choosing the basis in this way. Though it
should be stressed that at higher levels the choice of basis is arbitrary and one could in
principle choose, say, S∂µ

((
Dνψ̄

)
γσψ

)
as an independent member of the set.

With the choices we have detailed for each sector, there is mixing under renormalization
but clearly each mixing matrix of renormalization constants, ZOij , is upper triangular where

Oo i = ZOijOj (3.5)

relates bare operators, denoted by the subscript o, to their renormalized version. To be
explicit the matrix for the W2 and T2 sectors is

ZOij =

(
ZO11 Z

O
12

0 ZO22

)
(3.6)

and that for W3 is

ZOij =

ZO11 Z
O
12 Z

O
13

0 ZO22 Z
O
23

0 0 ZO33

 . (3.7)

Here we have chosen to simplify our notation by using numbers to denote the mixing
matrix elements rather than the more clumsy {W2, ∂W2}, {W3, ∂W3, ∂∂W3} or {T2, ∂T2}
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as subscripts. Given these matrices we then define our anomalous dimension mixing matrix
elements, γOij (a), formally as

γOij = µ
d

dµ
lnZOij (3.8)

where
µ
d

dµ
= β(a)

∂

∂a
+ αγα(a, α)

∂

∂α
. (3.9)

Here β(a) is the β-function and γα(a, α) is the anomalous dimension of the gauge parame-
ter where we follow the conventions used in [21] to define its renormalization. Although all
our renormalization constants will in fact be independent of α we have included it in (3.9)
as it technically appears as a formal parameter in the QCD Lagrangian. For a renormal-
ization where there is operator mixing, (3.8) is invariably given as the formal definition of
the anomalous dimensions. However, for practical purposes in the derivation of the oper-
ator correlation function anomalous dimensions it is more appropriate to give the explicit
consequences of (3.8). For sectors W2 and T2 we have

0 = γO11(a)ZO11 + µ
d

dµ
ZO11

0 = γO11(a)ZO12 + γO12(a)ZO22 + µ
d

dµ
ZO12

0 = γO22(a)ZO22 + µ
d

dµ
ZO22 (3.10)

and for W3 we have similar relations,

0 = γO11(a)ZO11 + µ
d

dµ
ZO11

0 = γO11(a)ZO12 + γO12(a)ZO22 + µ
d

dµ
ZO12

0 = γO11(a)ZO13 + γO12(a)ZO23 + γO13(a)ZO33 + µ
d

dµ
ZO13

0 = γO22(a)ZO22 + µ
d

dµ
ZO22

0 = γO22(a)ZO23 + γO23(a)ZO33 + µ
d

dµ
ZO23

0 = γO33(a)ZO33 + µ
d

dµ
ZO33 . (3.11)

We now turn to the practical problem of evaluating the anomalous dimensions ex-
plicitly to the loop order necessary for the operator correlation function renormalization at
three loops. Whilst this is actually O(a2) we have determined the mixing matrices to O(a3)
partly for completeness and checking reasons but also because of their potential use in phe-
nomenological problems where a momentum flows out through the operator itself. For the
mixing matrix anomalous dimensions the main issue is the determination of the off-diagonal
elements. In the original approach of [1–3] the operators were inserted in the Green’s func-
tion 〈ψ(p)O(0)ψ̄(−p)〉 whose more general version is illustrated graphically in figure 2. As
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Figure 2. Green’s function, 〈ψ(p1)Oi(−p1 − p2)ψ̄(p2)〉, used to renormalize the operators Oi.

the operator is a zero momentum insertion the contribution to the renormalization of the
off-diagonal part of ZOij cannot be deduced as the total derivative operator insertions vanish
trivially for this momentum configuration. So only all the diagonal elements of our mixing
matrix can be deduced via this momentum routing. There are two remaining choices for
routing momenta with one nullification, which is necessary if we wish to apply Mincer as
our tool of computation. With the choice 〈ψ(p)O(−p)ψ̄(0)〉 it is clear that one can access
the elements ZW2

12 , ZT2
12 and ZW3

23 once the respective values for ZW2
11 , ZT2

11 and ZW3
22 have

been included from the original results of [1–7, 39–41]. The determination of ZW3
12 and

ZW3
13 is more difficult. This is because there is only one momentum choice which makes

contact with both these renormalization constants at the same time. We circumvented this
difficulty to two loops by not omitting the terms involving ln(p2/µ2) which derive from the
dimensionality of the loop integrals at each loop order. One ordinarily ignores such terms
in a renormalization since they cancel trivially in a renormalizable theory. Retaining them
means that divergences such as 1

ε ln(p2/µ2), 1
ε2

ln(p2/µ2) and 1
ε

(
ln(p2/µ2)

)2 are present at
various loop orders but some of their coefficients involve counterterm parts of ZW3

12 and
ZW3

13 in their coupling constant series and Laurent expansion in ε. They give extra con-
straints on ZW3

12 and ZW3
13 which allowed us to decipher the W3 sector mixing matrix to

two loops. At three loops we can only derive a simple relation between the simple poles
of each renormalization constant. However, this is not in fact necessary for our operator
correlator results. Again the main tool is the Mincer package written in Form, [35–37].
The graphs are again generated by Qgraf, [38]. For the maximum number of possible co-
variant derivative terms that can arise, there are 3 one loop, 37 two loop and 684 three loop
Feynman graphs to evaluate. As before these are one particle irreducible graphs without
snails or tadpoles.

Given these considerations it is evident that sector W4 would be more difficult to
deduce completely to three loops due to a similar momentum routing issue. However,
it could be determined to two loops in principle by performing a four loop calculation
with ln(p2/µ2) terms included. If there were a four loop Mincer routine available then
this would be a viable proposition. Therefore, in principle, the procedure to determine
the mixing matrix for the non-singlet sectors Wn is available but in practice requires the
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computational machinery to evaluate the off-diagonal mixing matrix elements. All that
remains is to record the explicit values which are all given in the MS scheme. First, for
completeness and for comparing with the conventions of previous calculations the vector
and tensor current anomalous dimensions, [39–41], are

γV (a) = O(a4)

γT (a) = CFa +
[
257CA − 171CF − 52TFNf

]CFa2

18
+
[
13639C2

A − 4320ζ(3)C2
A + 12096ζ(3)CACF

−20469CACF − 1728ζ(3)CATFNf − 4016CATFNf
−6912ζ(3)C2

F + 6570C2
F + 1728ζ(3)CFTFNf

+1176CFTFNf − 144T 2
FC

2
F

]CFa3

108
+ O

(
a4
)

(3.12)

where ζ(z) is the Riemann zeta function, CA and CF are the usual colour group Casimirs
and TF is defined by Tr

(
T aT b

)
= TF δ

ab where T a are the generators of the colour group.
For the two sectors with two operators we have

γW2
11 (a) =

8
3
CFa +

1
27
[
376CACF − 112C2

F − 128CFTFNf
]
a2

+
1

243

[
(5184ζ(3) + 20920)C2

ACF − (15552ζ(3) + 8528)CAC2
F

− (10368ζ(3) + 6256)CACFTFNf + (10368ζ(3)− 560)C3
F

+ (10368ζ(3)− 6824)C2
FTFNf − 896CFT 2

FN
2
f

]
a3 + O(a4)

γW2
12 (a) = − 4

3
CFa +

1
27
[
56C2

F − 188CACF + 64CFTFNf
]
a2

+
1

243

[
(7776ζ(3) + 4264)CAC2

F − (2592ζ(3) + 10460)C2
ACF

+ (5184ζ(3) + 3128)CACFTFNf − (5184ζ(3)− 280)C3
F

− (5184ζ(3)− 3412)C2
FTFNf + 448CFT 2

FN
2
f

]
a3 + O(a4)

γW2
22 (a) = O(a4) (3.13)

and

γT2
11 (a) = 3CFa +

1
2
[
35CACF − 9C2

F − 12CFTFNf
]
a2

+
1

108

[
12553C2

ACF − 7479CAC2
F + 1782C3

F − (5184ζ(3) + 4168)CACFTFNf

+ (5184ζ(3)− 3240)C2
FTFNf − 368CFT 2

FN
2
f

]
a3 + O(a4)

γT2
12 (a) = − CFa +

1
18
[
28CFTFNf − 45C2

F − 29CACF
]
a2

+
1

108

[
(6048ζ(3)− 6495)CAC2

F − (2160ζ(3)− 543)C2
ACF

+ (1728ζ(3) + 76)CACFTFNf − (3456ζ(3)− 2394)C3
F

− (1728ζ(3)− 2208)C2
FTFNf + 112CFT 2

FN
2
f

]
a3 + O(a4)
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γT2
22 (a) = CFa +

1
18
[
257CACF − 171C2

F − 52CFTFNf
]
a2

+
1

108

[
(13639− 4320ζ(3))C2

ACF + (12096ζ(3)− 20469)CAC2
F

− (1728ζ(3) + 4016)CACFTFNf − (6912ζ(3)− 6570)C3
F

+ (1728ζ(3) + 1176)C2
FTFNf − 144CFT 2

FN
2
f

]
a3 + O(a4) . (3.14)

Given the issues with computing the full set of anomalous dimensions to three loops for
the W3 sector we record that the results are

γW3
11 (a) =

25
6
CFa +

1
432

[
8560CACF − 2035C2

F − 3320CFTFNf
]
a2

+
1

15552

[
(285120ζ(3) + 1778866)C2

ACF − (855360ζ(3) + 311213)CAC2
F

− (1036800ζ(3) + 497992)CACFTFNf + (570240ζ(3)− 244505)C3
F

+ (1036800ζ(3)− 814508)C2
FTFNf − 82208CFT 2

FN
2
f

]
a3 + O(a4)

γW3
12 (a) = − 3

2
CFa +

1
144

[
81C2

F − 848CACF + 424CFTFNf
]
a2 + O(a3)

γW3
13 (a) = − 1

2
CFa +

1
144

[
103C2

F − 388CACF + 104CFTFNf
]
a2 + O(a3)

γW3
22 (a) =

8
3
CFa +

1
27
[
376CACF − 112C2

F − 128CFTFNf
]
a2

+
1

243

[
(5184ζ(3) + 20920)C2

ACF − (15552ζ(3) + 8528)CAC2
F

− (10368ζ(3) + 6256)CACFTFNf + (10368ζ(3)− 560)C3
F

+ (10368ζ(3)− 6824)C2
FTFNf − 896CFT 2

FN
2
f

]
a3 + O(a4)

γW3
23 (a) = − 4

3
CFa +

1
27
[
56C2

F − 188CACF + 64CFTFNf
]
a2

+
1

243

[
(7776ζ(3) + 4264)CAC2

F − (2592ζ(3) + 10460)C2
ACF

+ (5184ζ(3) + 3128)CACFTFNf − (5184ζ(3)− 280)C3
F

− (5184ζ(3)− 3412)C2
FTFNf + 448CFT 2

FN
2
f

]
a3 + O(a4)

γW3
33 (a) = O(a4) (3.15)

where those for γW3
12 (a) and γW3

13 (a) are only given to two loops. Clearly the diagonal
anomalous dimensions of each sector, including those with total derivatives, are the same
as the corresponding non-total derivative operator. Equally the mixing of the second row
of W3 is trivially related to that of the first row of W2. This is a reassuring observation.
As further checks on the results, since we have used the algorithm of [36] to determine the
renormalization constants, therefore, the double and triple poles in ε are predetermined
by the renormalization group equations of (3.10) and (3.11). We note that our results are
consistent with those constraints.

We now focus on the renormalization structure of the operator correlation functions.
These are Green’s functions of operators rather than of fields but like Green’s functions of
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fields they have an associated renormalization constant after the constituent bare operators
have been replaced by their renormalized versions, taking into account any mixing. We
denote these additional renormalization constants by Zij(k) and follow the quark current
correlator renormalization formalism of [26–28]. This renormalization constant appears
as a contact term rather than as a canonical multiplicative renormalization constant that
one normally expects in the renormalization of a Green’s function involving only fields. In
the case of operator correlators where there is no mixing of the constituent operators, the
relation between bare and renormalized correlators has been given in, for example, [26–28].
For completeness, we give the form for the tensor current correlation function. It is

ΠT,T
(i) (q) = ZT,T(i) q

2 + µ2ε
(
ZT
)2

ΠT,T
o (i)(q) (3.16)

where we have included the subscript label deriving from the Lorentz tensor decomposition
since there will in principle be a divergence for each projection. This relation is the basic
form used in our computer algebra setup and the automatic Feynman diagram renormaliza-
tion procedure of [36] is easy to extend and encode in Form for this case. Given (3.16) it is
straightforward to derive the renormalization group equation satisfied by the renormalized
correlation function. Applying (3.9) to (3.16) we have

0 = µ
d

dµ
ΠT,T

(i) (q) + 2γT (a)ΠT,T
(i) (q) − q2γT,T(i) (a) (3.17)

where the correlation function anomalous dimension is formally given by

γT,T(i) (a) =
[
− ε + β(a)

∂

∂a
+ 2γT (a)

]
ZT,T(i) . (3.18)

Although part of our ultimate aim is to provide the finite parts of the amplitudes we will
also determine these anomalous dimensions to O(a2) inclusive. Indeed we use the results,
such as (3.18) as consistency checks on the explicit renormalization constants. Aside from
being gauge independent expressions, the double and triple poles in ε are again determined
by the lower order simple poles. Moreover, if one had not taken the issue of mixing into
account this internal consistency check would in fact fail.

Given this form for the quark current correlators, S and V , [26–28], and now also
T , their extension to operator correlators where there is mixing is subtle. Therefore, we
highlight the structure for two cases which are {V,W3} and {W3,W3}. The resulting renor-
malization group functions for the remaining cases, {V,W2}, {W2,W2} and {T, T2} can be
readily deduced from the final relations by appropriate relabelling and ignoring irrelevant
terms which, say, do not occur for the W2 sector. For each case we consider, the key is
to simply write down the forms analogous to (3.16) but including all possible consistent
mixings and all possible operator combinations in the correlation functions for that sector
and ensure the equation is dimensionally consistent. The reason for this is that the relation
between bare and renormalized correlation functions are entwined in an intricate way. As
the {V,W3} case is simple since only one of the constituent operator undergoes mixing, we
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illustrate this by giving the three renormalization definitions explicitly as,

ΠV,W3

(i) (q) = ZV,W3

(i) (q2)2 + µ2εZV
[
ZW3

11 ΠV,W3

o (i) (q) + ZW3
12 ΠV,∂W3

o (i) (q) + ZW3
13 ΠV,∂∂W3

o (i) (q)
]

ΠV,∂W3

(i) (q) = ZV,∂W3

(i) (q2)2 + µ2εZV
[
ZW3

22 ΠV,∂W3

o (i) (q) + ZW3
23 ΠV,∂∂W3

o (i) (q)
]

ΠV,∂∂W3

(i) (q) = ZV,∂∂W3

(i) (q2)2 + µ2εZV ZW3
33 ΠV,∂∂W3

o (i) (q) (3.19)

where the mixing matrix elements of (3.7) appear and the factor of q2 multiplying Zi,j(k) de-
rives from the dimensionality of the actual correlator in question to ensure a dimensionless
renormalization constant. The next stage is to apply (3.9) to each of equation and then
rewrite the full set without any bare correlators. This is algebraically tedious but it is best
to start with the final equation since it is similar to (3.16) whence

0 = µ
d

dµ
ΠV,∂∂W3

(i) (q) +
(
γV (a) + γW3

33 (a)
)

ΠV,∂∂W3

(i) (q) − (q2)2γV,∂∂W3

(i) (a) (3.20)

with

γV,∂∂W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γV (a) + γW3

33 (a)
]
ZV,∂∂W3

(i) . (3.21)

Considering the second equation of (3.19) next, after the application of (3.9) it is necessary
to rewrite both bare correlators which now occur back in terms of their renormalized ver-
sions. Throughout this and all our other similar manipulations, we always associate terms
with powers of the momentum q2 as contributing to the correlator anomalous dimension.
Hence, we have

0 = µ
d

dµ
ΠV,∂W3

(i) (q) +
(
γV (a) + γW3

22 (a)
)

ΠV,∂W3

(i) (q)

+ γW3
23 (a)ΠV,∂∂W3

(i) (q) − (q2)2γV,∂W3

(i) (a) (3.22)

and

γV,∂W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γV (a) + γW3

22 (a)
]
ZV,∂W3

(i) + γW3
23 (a)ZV,∂∂W3

(i) . (3.23)

Finally, both of the last equations of (3.19) are required to complete the set of three
renormalization group functions for the {V,W3} case. We have

0 = µ
d

dµ
ΠV,W3

(i) (q) +
(
γV (a) + γW3

11 (a)
)

ΠV,W3

(i) (q) + γW3
12 (a)ΠV,∂W3

(i) (q)

+ γW3
13 (a)ΠV,∂∂W3

(i) (q) − (q2)2γV,W3

(i) (a) (3.24)

where

γV,W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γV (a) + γW3

11 (a)
]
ZV,W3

(i)

+ γW3
12 (a)ZV,∂W3

(i) + γW3
13 (a)ZV,∂∂W3

(i) . (3.25)
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For the {W3,W3} case the derivation follows parallel lines though the starting point is
a more complicated set of six relations between bare and renormalized correlators as there
is mixing in both inserted operators. These are

ΠW3,W3

(i) (q) = ZW3,W3

(i) (q2)3

+ µ2ε

[(
ZW3

11

)2
ΠW3,W3

o (i) (q) + 2ZW3
11 Z

W3
12 ΠW3,∂W3

o (i) (q)

+2ZW3
11 Z

W3
13 ΠW3,∂∂W3

o (i) (q) +
(
ZW3

12

)2
Π∂W3,∂W3

o (i) (q)

+2ZW3
12 Z

W3
13 Π∂W3,∂∂W3

o (i) (q) +
(
ZW3

13

)2
Π∂∂W3,∂∂W3

o (i) (q)
]

ΠW3,∂W3

(i) (q) = ZW3,∂W3

(i) (q2)3

+ µ2ε
[
ZW3

11 Z
W3
22 ΠW3,∂W3

o (i) (q) + ZW3
12 Z

W3
22 Π∂W3,∂W3

o (i) (q)

+ZW3
13 Z

W3
22 Π∂W3,∂∂W3

o (i) (q) + ZW3
11 Z

W3
23 ΠW3,∂∂W3

o (i) (q)

+ZW3
12 Z

W3
23 Π∂W3,∂∂W3

o (i) (q) + ZW3
13 Z

W3
23 Π∂∂W3,∂∂W3

o (i) (q)
]

ΠW3,∂∂W3

(i) (q) = ZW3,∂∂W3

(i) (q2)3

+ µ2ε
[
ZW3

11 Z
W3
33 ΠW3,∂∂W3

o (i) (q) + ZW3
12 Z

W3
33 Π∂W3,∂∂W3

o (i) (q)

+ZW3
13 Z

W3
33 Π∂∂W3,∂∂W3

o (i) (q)
]

Π∂W3,∂W3

(i) (q) = Z∂W3,∂W3

(i) (q2)3

+ µ2ε

[(
ZW3

22

)2
Π∂W3,∂W3

o (i) (q) + 2ZW3
22 Z

W3
23 Π∂W3,∂∂W3

o (i) (q)

+
(
ZW3

23

)2
Π∂∂W3,∂∂W3

o (i) (q)
]

Π∂W3,∂∂W3

(i) (q) = Z∂W3,∂∂W3

(i) (q2)3

+ µ2ε
[
ZW3

22 Z
W3
33 Π∂W3,∂∂W3

o (i) (q) + ZW3
23 Z

W3
23 Π∂∂W3,∂∂W3

o (i) (q)
]

Π∂∂W3,∂∂W3

(i) (q) = Z∂∂W3,∂∂W3

(i) (q2)3 + µ2ε
(
ZW3

33

)2
Π∂∂W3,∂∂W3

o (i) (q) . (3.26)

It is worth noting that our choice of the upper triangular form for the mixing matrix in
fact leads to a simpler renormalization group equation derivation from the point of view
of disentangling the relations to produce equations without bare correlators. Again for
this sector it is best to begin deriving the full renormalization group equations from the
final equation of (3.26) and then systematically move to the row immediately above in
the matrix. As this exercise is equally as straightforward though more tedious than the
{V,W3} case, we merely record that the final renormalization group equations are

0 = µ
d

dµ
ΠW3,W3

(i) (q) + 2γW3
11 (a)ΠW3,W3

(i) (q) + 2γW3
12 (a)ΠW3,∂W3

(i) (q)

+ 2γW3
13 (a)ΠW3,∂∂W3

(i) (q) − (q2)3γW3,W3

(i) (a)
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0 = µ
d

dµ
ΠW3,∂W3

(i) (q) +
(
γW3

11 (a) + γW3
22 (a)

)
ΠW3,∂W3

(i) (q) + γW3
12 (a)Π∂W3,∂W3

(i) (q)

+ γW3
23 (a)Π∂W3,∂∂W3

(i) (q) + γW3
13 (a)Π∂∂W3,∂∂W3

(i) (q) − (q2)3γW3,∂W3

(i) (a)

0 = µ
d

dµ
ΠW3,∂∂W3

(i) (q) +
(
γW3

11 (a) + γW3
33 (a)

)
ΠW3,∂∂W3

(i) (q) + γW3
12 (a)Π∂W3,∂∂W3

(i) (q)

+ γW3
13 (a)Π∂∂W3,∂∂W3

(i) (q) − (q2)3γW3,∂∂W3

(i) (a)

0 = µ
d

dµ
Π∂W3,∂W3

(i) (q) + 2γW3
22 (a)Π∂W3,∂W3

(i) (q) + 2γW3
23 (a)Π∂W3,∂∂W3

(i) (q)

− (q2)3γ∂W3,∂W3

(i) (a)

0 = µ
d

dµ
Π∂W3,∂∂W3

(i) (q) +
(
γW3

22 (a) + γW3
33 (a)

)
Π∂W3,∂∂W3

(i) (q) + γW3
23 (a)Π∂∂W3,∂∂W3

(i) (q)

− (q2)3γ∂W3,∂∂W3

(i) (a)

0 = µ
d

dµ
Π∂∂W3,∂∂W3

(i) (q) + 2γW3
33 (a)Π∂∂W3,∂∂W3

(i) (q) − (q2)3γ∂∂W3,∂∂W3

(i) (a) (3.27)

where the correlator anomalous dimensions are

γW3,W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ 2γW3

11 (a)
]
ZW3,W3

(i)

+ 2γW3
12 (a)ZW3,∂W3

(i) + 2γW3
13 (a)ZW3,∂∂W3

(i)

γW3,∂W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γW3

11 (a) + γW3
22 (a)

]
ZW3,∂W3

(i)

+ γW3
12 (a)Z∂W3,∂W3

(i) + γW3
23 (a)ZW3,∂∂W3

(i) + γW3
13 (a)Z∂W3,∂∂W3

(i)

γW3,∂∂W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γW3

11 (a) + γW3
33 (a)

]
ZW3,∂∂W3

(i)

+ γW3
12 (a)Z∂W3,∂∂W3

(i) + γW3
13 (a)Z∂∂W3,∂∂W3

(i)

γ∂W3,∂W3

(i) (a) =
[
− ε + β(a)

∂

∂a
+ 2γW3

22 (a)
]
Z∂W3,∂W3

(i) + 2γW3
23 (a)Z∂W3,∂∂W3

(i)

γ∂W3,∂∂W3

(i) (a) =
[
−ε+ β(a)

∂

∂a
+ γW3

22 (a) + γW3
33 (a)

]
Z∂W3,∂∂W3

(i) + γW3
23 (a)Z∂∂W3,∂∂W3

(i)

γ∂∂W3,∂∂W3

(i) (a) =
[
−ε+ β(a)

∂

∂a
+ 2γW3

33 (a)
]
Z∂∂W3,∂∂W3

(i) . (3.28)

Comparing these final forms with the original relationships (3.26) an evident pattern
emerges in the final renormalization group equations. Not all the original bare opera-
tors of (3.26) appear in the corresponding equation. However, this is partly because the
transformation to (3.27) involves the non-trivial entanglement alluded to earlier but in such
a way that no information is lost. In practice there are cancellations in the derivation in
such a way that the coefficient of certain off-diagonal elements is zero. Indeed given the
upper triangular form of the mixing matrix and the final forms (3.27), one could have been
tempted merely to write these down without derivation.

For completeness, we close this section by recording the formal definitions of the re-
maining operator correlation function anomalous dimensions. As is apparent from com-
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paring with their {V,W3} and {W3,W3} counterparts there is a consistent correspondence
between the terms of the anomalous dimensions and the form of the renormalization group
function itself that means we only record the anomalous dimensions themselves for brevity
and as an aid to checking the renormalization group equations. We have for those cases
involving W2

γV,W2(a) =
[
− ε + β(a)

∂

∂a
+ γV (a) + γW2

11 (a)
]
ZV,W2 + γW2

12 (a)ZV,∂W2

γV,∂W2(a) =
[
− ε + β(a)

∂

∂a
+ γV (a) + γW2

22 (a)
]
ZV,∂W2 (3.29)

and

γW2,W2

(i) (a) =
[
− ε + β(a)

∂

∂a
+ 2γW2

11 (a)
]
ZW2,W2

(i) + 2γW2
12 (a)ZW2,∂W2

(i)

γW2,∂W2

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γW2

11 (a) + γW2
22 (a)

]
ZW2,∂W2

(i) + γW2
12 (a)Z∂W2,∂W2

(i)

γ∂W2,∂W2

(i) (a) =
[
− ε + β(a)

∂

∂a
+ 2γW2

22 (a)
]
Z∂W2,∂W2

(i) . (3.30)

Finally, for T2 we have

γT,T2

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γT (a) + γT2

11 (a)
]
ZT,T2

(i) + γT2
12 (a)ZT,∂T2

(i)

γT,∂T2

(i) (a) =
[
− ε + β(a)

∂

∂a
+ γT (a) + γT2

22 (a)
]
ZT,∂T2

(i) . (3.31)

4 Results

We now turn to the mundane task of recording all our results for the operator correlation
functions. These are broken into subsections where the first named operator of the title
corresponds to the operator O1 of figure 1. In each section, we provide the finite renormal-
ized amplitudes with respect to the various projections and then the associated correlator
anomalous dimension. In recording the finite parts of all our correlators we show the overall
dimension of the amplitude by explicitly factorizing off the overall q2 dependence which is
not the same for each sector. We note that we included the powers of q2 in the contact
term of the relation between bare and renormalized amplitudes in the basic relation in order
to identify the operator correlator anomalous dimensions in analysing the renormalization
group structure. For certain sectors due to the nature of the total derivative operators
the explicit form of some amplitudes appear in an earlier subsection since there is a clear
relation to O(a2) with the explicit value of the amplitudes. In certain cases, such as the
vector correlator, the vanishing of the correlator projection to three loops is actually an
all orders feature due to symmetry. In other cases where relations hold to O(a2) this may
be valid to all orders but we make no assertion beyond the order we have calculated to.
Finally, for completeness as well as for comparing conventions, we also display results for
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{S, S} and {V, V } which are in agreement with, [26–28]. With d(R) the dimension of the
quark representation and

` = ln
(
µ2

q2

)
(4.1)

we have:

4.1 Scalar-scalar

ΠS,S(q) = q2Π̃S,S(a) (4.2)

Π̃S,S(a) = d(R)

[
4 + 2`+ CF

[
131
2
− 24ζ(3) + 34`+ 6`2

]
a

+ CF

[(
64ζ(3)− 2044

9
− 130`+ 32ζ(3)`− 88

3
`2 − 8

3
`3
)
TFNf

+
(

14419
18

− 300ζ(3)− 18ζ(4)− 40ζ(5) +
893
2
`− 124ζ(3)`+

284
3
`2 +

22
3
`3
)
CA

+

(
1613

4
− 384ζ(3) + 36ζ(4) + 240ζ(5) +

691
2
`

−72ζ(3)`+ 105`2 + 12`3
)
CF

]
a2

]
+ O(a3) (4.3)

γS,S(a) = d(R)
[
2 + 10CFa +

CF
2

[
(154− 72ζ(3))CA

+ (144ζ(3)− 119)CF − 32TFNf
]
a2
]

+ O
(
a3
)
. (4.4)

4.2 Vector-vector

ΠV,V
(i) (q) = q2Π̃V,V

(i) (a) (4.5)

Π̃V,V
(1) (a) = − 2Π̃V,W2

(1) (a) = − Π̃V,∂W2

(1) (a)

= d(R)
[
− 20

9
− 4

3
` + CF

[
16ζ(3)− 55

3
− 4`

]
a

+ CF

[(
7402
81
− 608

9
ζ(3) +

88
3
`− 64

3
ζ(3)`+

8
3
`2
)
TFNf

+
(

1816
9

ζ(3) +
80
3
ζ(5)− 44215

162
− 82`+

176
3
ζ(3)`− 22

3
`2
)
CA

+
(

286
9

+
296
3
ζ(3)− 160ζ(5) + 2`

)
CF

]
a2

]
+ O(a3)

Π̃V,V
(2) (a) = − 2Π̃V,W2

(2) (a) = − Π̃V,∂W2

(2) (a) = O(a3) (4.6)

γV,V (a) = d(R)
[
− 4

3
− 4CFa +

CF
9
[
18 CF − 133CA + 44TFNf

]
a2

]
+O(a3). (4.7)

– 20 –



J
H
E
P
0
4
(
2
0
0
9
)
1
2
7

4.3 Tensor-tensor

ΠT,T
(i) (q) = q2Π̃T,T

(i) (a) (4.8)

Π̃T,T
(1) (a) = d(R)

[
− 4

9
− 2

3
` + CF

[
8ζ(3)− 491

54
− 14

9
`+

2
3
`2
]
a

+ CF

[(
10672
243

− 1024
27

ζ(3) +
766
81

`− 32
3
ζ(3)`− 8

9
`2 − 8

27
`3
)
TFNf

+
(

2732
27

ζ(3)− 14
3
ζ(4) +

40
3
ζ(5)− 19427

162

−1771
162

`+ 20ζ(3)`+
20
3
`2 +

22
27
`3
)
CA

+
(

608
9
ζ(3) +

28
3
ζ(4)− 80ζ(5)− 15973

972
− 1075

54
`

+
8
3
ζ(3)`− 43

9
`2 − 4

9
`3
)
CF

]
a2

]
+ O(a3) (4.9)

Π̃T,T
(2) (a) = d(R)

[
20
9

+
4
3
` + CF

[
593
27
− 16ζ(3) +

28
9
`− 4

3
`2
]
a

+ CF

[(
2048
27

ζ(3)− 21328
243

− 1532
81

`+
64
3
ζ(3)`+

16
9
`2 +

16
27
`3
)
TFNf

+
(

58075
243

− 5296
27

ζ(3) +
28
3
ζ(4)− 80

3
ζ(5)

+
1771
81

`− 40ζ(3)`− 40
3
`2 − 44

27
`3
)
CA

+
(

22051
486

− 1328
9

ζ(3)− 56
3
ζ(4) + 160ζ(5) +

1075
27

`

− 16
3
ζ(3)`+

86
9
`2 +

8
9
`3
)
CF

]
a2

]
+ O(a3) (4.10)

γT,T(1) (a) = d(R)

[
− 2

3
− 22

9
CFa +

CF
162

[
(3024ζ(3)− 4803)CF

+ (1574− 1512ζ(3))CA − 16TFNf
]
a2

]
+ O(a3)

γT,T(2) (a) = d(R)

[
4
3

+
68
9
CFa +

CF
81

[
(1512ζ(3) + 388)CA

+ (3363− 3024ζ(3))CF − 200TFNf
]
a2

]
+ O(a3). (4.11)

4.4 Vector-Wilson 2

ΠV,W2

(i) (q) = q2Π̃V,W2

(i) (a) (4.12)

γV,W2(a) = d(R)
[

2
3

+ 2CFa +
CF
18

[133CA − 18CF − 44TFNf ] a2

]
+ O(a3)
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γV,∂W2(a) = d(R)
[

4
3

+ 4CFa +
CF
9

[133CA − 18CF − 44TFNf ] a2

]
+ O(a3) .(4.13)

4.5 Wilson 2-Wilson 2

ΠW2,W2

(i) (q) = (q2)2Π̃W2,W2

(i) (a) (4.14)

Π̃W2,W2

(1) (a) = d(R)
[

12
25

+
1
5
` − CF

[
12
5
ζ(3) +

17533
13500

+
473
225

`+
8
15
`2
]
a

+ CF

[(
419327
303750

+
1816
135

ζ(3) +
69266
10125

`

+
16
5
ζ(3)`+

1586
675

`2 +
32
135

`3
)
TFNf

+
(

16
5
ζ(4)− 15838

675
ζ(3)− 4ζ(5)− 3541817

1215000
− 399953

20250
`

− 12
5
ζ(3)`− 8963

1350
`2 − 88

135
`3
)
CA

+
(

12235087
455625

− 2606
135

ζ(3)− 32
5
ζ(4) + 24ζ(5) +

383653
20250

`

+
1448
225

`2 +
128
135

`3
)
CF

]
a2

]
+ O(a3) (4.15)

Π̃W2,W2

(2) (a) = d(R)
[

92
225

+
2
15
` − CF

[
8
5
ζ(3) +

15683
20250

+
986
675

`+
16
45
`2
]
a

+ CF

[(
1685066
1366875

+
3632
405

ζ(3) +
48404
10125

`

+
32
15
ζ(3)`+

1084
675

`2 +
64
405

`3
)
TFNf

+
(

32
15
ζ(4)− 29276

2025
ζ(3)− 8

5
ζ(5)− 7819793

2733750
− 46547

3375
`

− 8
5
ζ(3)`− 3061

675
`2 − 176

405
`3
)
CA

+
(

8792588
455625

− 5788
405

ζ(3)− 64
15
ζ(4) + 16ζ(5) +

44597
3375

`

+
9008
2025

`2 +
256
405

`3
)
CF

]
a2

]
+ O(a3) (4.16)

Π̃W2,W2

(3) (a) = d(R)
[

17
225

+
2
15
` − CF

[
8
5
ζ(3)− 34439

6750
− 638

225
`− 8

15
`2
]
a

+ CF

[(
464
135

ζ(3)− 6263527
303750

− 128096
10125

`

+
32
15
ζ(3)`− 1916

675
`2 − 32

135
`3
)
TFNf
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+
(

918157
15000

− 17492
675

ζ(3)− 16
5
ζ(4)− 8

3
ζ(5) +

364234
10125

`

− 184
15

ζ(3)`+
5389
675

`2 +
88
135

`3
)
CA

+
(

16ζ(5) +
32
5
ζ(4)− 436

135
ζ(3)− 28297949

911250
− 160709

10125
`

− 1288
225

`2 − 128
135

`3
)
CF

]
a2

]
+ O(a3) (4.17)

Π̃W2,∂W2

(1) (a) = Π̃W2,∂W2

(2) (a) = O(a3)

Π̃W2,∂W2

(3) (a) = d(R)
[

10
9

+
2
3
` + CF

[
55
6
− 8ζ(3) + 2`

]
a

+ CF

[(
304
9
ζ(3)− 3701

81
− 44

3
`+

32
3
ζ(3)`− 4

3
`2
)
TFNf

+
(

44215
324

− 908
9
ζ(3)− 40

3
ζ(5) + 41`− 88

3
ζ(3)`+

11
3
`2
)
CA

+
(

80ζ(5)− 148
3
ζ(3)− 143

9
− `
)
CF

]
a2

]
+ O(a3) (4.18)

Π̃∂W2,∂W2

(1) (a) = Π̃∂W2,∂W2

(2) (a) = O(a3)

Π̃∂W2,∂W2

(3) (a) = 2Π̃W2,∂W2

(3) (a) + O(a3) (4.19)

γW2,W2

(1) (a) = d(R)

[
1
5

+
103
225

CFa +
CF

40500

[
(259200ζ(3)− 65603)CA

+ (325498− 518400ζ(3))CF + 22612TFNf
]
a2

]
+ O(a3)

γW2,W2

(2) (a) = d(R)

[
2
15

+
18
25
CFa +

CF
60750

[
(26507 + 259200ζ(3))CA

+ (345738− 518400ζ(3))CF − 7828TFNf
]
a2

]
+ O(a3)

γW2,W2

(3) (a) = d(R)

[
2
15

+
62
225

CFa +
CF

20250

[
(78919− 129600ζ(3))CA

+ (259200ζ(3)− 184754)CF − 26276TFNf
]
a2

]
+ O(a3)

γW2,∂W2

(1) (a) = γW2,∂W2

(2) (a) = 0

γW2,∂W2

(3) (a) = d(R)

[
2
3

+ 2CFa +
CF
18

[
133CA − 18CF − 44TFNf

]
a2

]
+ O(a3)

γ∂W2,∂W2

(1) (a) = γ∂W2,∂W2

(2) (a) = 0
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γ∂W2,∂W2

(3) (a) = d(R)

[
4
3

+ 4CFa +
CF
9

[
133CA − 18CF − 44TFNf

]
a2

]
+ O(a3). (4.20)

4.6 Vector-Wilson 3

ΠV,W3

(i) (q) = (q2)2Π̃V,W3

(i) (a) (4.21)

Π̃V,W3

(1) (a) = − Π̃V,W3

(2) (a)

= d(R)
[

31
675

+
1
45
` + CF

[
2177
6480

− 4
15
ζ(3) +

2
27
`

]
a

+ CF

[(
152
135

ζ(3)− 4070273
2624400

− 7267
14580

`+
16
45
ζ(3)`− 11

243
`2
)
TFNf

+
(

48524449
10497600

− 1364
405

ζ(3)− 4
9
ζ(5) +

4051
2916

`− 44
45
ζ(3)`+

121
972

`2
)
CA

+
(

8
3
ζ(5)− 1118783

2624400
− 140

81
ζ(3)− 187

19440
`

)
CF

]
a2

]
+ O(a3)

Π̃V,∂W3

(1) (a) = − Π̃V,∂W3

(2) (a) =
1
2

Π̃V,∂∂W3

(1) (a) = − 1
2

Π̃V,∂∂W3

(2) (a)

= d(R)
[

2
27

+
1
27
` + CF

[
19
36
− 4

9
ζ(3) +

1
9
`

]
a

+ CF

[(
152
81

ζ(3)− 3719
1458

− 22
27
`+

16
27
ζ(3)`− 2

27
`2
)
TFNf

+
(

44437
5832

− 454
81

ζ(3)− 20
27
ζ(5) +

41
18
`− 44

27
ζ(3)`+

11
54
`2
)
CA

+
(

40
9
ζ(5)− 8

9
− 74

27
ζ(3)− 1

18
`

)
CF

]
a2

]
+ O(a3) (4.22)

γV,W3

(1) (a) = − γV,W3

(2) (a) = d(R)
[

1
45

+
13
162

CFa

+
CF

116640

[
27062CA + 239CF − 9136TFNf

]
a2

]
+ O(a3)

γV,∂W3

(1) (a) = − γV,∂W3

(2) (a) =
1
2
γV,∂∂W3

(1) (a) = − 1
2
γV,∂∂W3

(2) (a)

= d(R)

[
1
27

+
1
9
CFa+

CF
108

[
37CA − 6CF − 12TFNf

]
a2

]
+O(a3). (4.23)

4.7 Wilson 3-Wilson 3

ΠW3,W3

(i) (q) = (q2)3Π̃W3,W3

(i) (a) (4.24)
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Π̃W3,W3

(1) (a) = d(R)
[

457
396900

+
1

3780
`− CF

[
4831049

200037600
+

1
315

ζ(3) +
3

196
`+

1
378

`2
]
a

+ CF

[(
254
8505

ζ(3) +
61767749
675126900

+
45362
694575

`

+
4

945
ζ(3)`+

5339
357210

`2 +
2

1701
`3
)
TFNf

+
(

277
23814

ζ(3) +
1
63
ζ(4)− 1

189
ζ(5)− 27125381251

108020304000

− 17694461
100018800

`+
19
945

ζ(3)`− 14383
357210

`2 − 11
3402

`3
)
CA

+
(

84198061049
216040608000

+
2
63
ζ(5)− 2

63
ζ(4)− 59

945
ζ(3)

+
54952451
240045120

`+
3959
63504

`2 +
25

3402
`3
)
CF

]
a2

]
+O(a3)

Π̃W3,W3

(2) (a) = d(R)
[
− 599

132300
− 1

630
`+ CF

[
7012477

133358400
+

2
105

ζ(3) +
5851

158760
`+

5
756

`2
]
a

+ CF

[
−
(

1034
8505

ζ(3) +
18993505
100018800

+
5117891
33339600

`

+
8

315
ζ(3)`+

2189
59535

`2 +
5

1701
`3
)
TFNf

+
(

6793
59535

ζ(3)− 5
126

ζ(4) +
2
63
ζ(5) +

269779943
533433600

+
3463261
8334900

`− 1
105

ζ(3)`+
94321
952560

`2 +
55

6804
`3
)
CA

+
(

6619
34020

ζ(3) +
5
63
ζ(4)− 4

21
ζ(5)− 5595369371

5761082880

− 95885941
160030080

`− 20453
127008

`2 − 125
6804

`3
)
CF

]
a2

]
+O(a3)

Π̃W3,W3

(3) (a) = d(R)
[

4051
396900

+
13

3780
`− CF

[
5103787

200037600
+

13
315

ζ(3) +
63503

2381400
`+

41
5670

`2
]
a

+ CF

[(
5594
25515

ζ(3)− 9014474417
270050760000

+
3187379
41674500

`

+
52
945

ζ(3)`+
109283
3572100

`2 +
82

25515
`3
)
TFNf

+
(

16759291981
154314720000

− 364031
893025

ζ(3) +
41
945

ζ(4)− 13
189

ζ(5)

− 230532091
1000188000

`− 61
945

ζ(3)`− 1261123
14288400

`2 − 451
51030

`3
)
CA

+
(

221977783933
1080203040000

+
26
63
ζ(5)− 82

945
ζ(4)− 8251

25515
ζ(3)

+
19415531
111132000

`+
159653
2381400

`2 +
521

51030
`3
)
CF

]
a2

]
+O(a3)
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Π̃W3,W3

(4) (a) = d(R)
[
− 233

26460
− 1

252
`+ CF

[
1
21
ζ(3)− 6186559

666792000
+

6283
264600

`+
31

3780
`2
]
a

+ CF

[(
577820077
5000940000

− 2144
8505

ζ(3)− 2806243
55566000

`

− 4
63
ζ(3)`− 8921

297675
`2 − 31

8505
`3
)
TFNf

+
(

314851
595350

ζ(3)− 31
630

ζ(4) +
5
63
ζ(5)− 5651256311

17146080000

+
28483291
166698000

`+
8

105
ζ(3)`+

426019
4762800

`2 +
341

34020
`3
)
CA

+
(

11023
34020

ζ(3) +
31
315

ζ(4)− 10
21
ζ(5) +

95645127727
720135360000

+
64654361

4000752000
`− 256373

9525600
`2 − 271

34020
`3
)
CF

]
a2

]
+O(a3) (4.25)

Π̃W3,∂W3

(1) (a) = d(R)
[
− 1

675
− 1

1620
` + CF

[
1

135
ζ(3)− 24571

3499200
− 1

810
`

]
a

+ CF

[(
3011809
94478400

− 38
1215

ζ(3) +
23999

2624400
`− 4

405
ζ(3)`+

31
43740

`2

)
TFNf

+
(

329
3645

ζ(3) +
1
81
ζ(5)− 36851477

377913600

− 66631
2624400

`+
11
405

ζ(3)`− 341
174960

`2
)
CA

+
(

151
3645

ζ(3)− 2
27
ζ(5) +

175559
188956800

− 37657
3499200

`− 8
3645

`2
)
CF

]
a2

]
+ O(a3)

Π̃W3,∂W3

(2) (a) = O(a3)

Π̃W3,∂W3

(3) (a) = d(R)
[

26
2025

+
7

1620
`− CF

[
255937

17496000
+

7
135

ζ(3) +
239
6075

`+
4

405
`2
]
a

+ CF

[(
5571143

2361960000
+

1022
3645

ζ(3) +
1622549
13122000

`

+
28
405

ζ(3)`+
9601

218700
`2 +

16
3645

`3
)
TFNf

+
(

170483597
9447840000

− 332
675

ζ(3) +
8

135
ζ(4)− 7

81
ζ(5)

− 4693921
13122000

`− 29
405

ζ(3)`− 108491
874800

`2 − 44
3645

`3
)
CA

+
(

2525581969
4723920000

+
14
27
ζ(5)− 16

135
ζ(4)− 1598

3645
ζ(3)

+
6610253
17496000

`+
764
6075

`2 +
64

3645
`3
)
CF

]
a2

]
+ O(a3)
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Π̃W3,∂W3

(4) (a) = Π̃∂W3,∂W3

(4) (a)

= d(R)
[
− 1

75
− 1

180
` + CF

[
17533
486000

+
1
15
ζ(3) +

473
8100

`+
2

135
`2
]
a

+ CF

[
−
(

419327
10935000

+
454
1215

ζ(3) +
34633
182250

`

+
4
45
ζ(3)`+

793
12150

`2 +
8

1215
`3
)
TFNf

+
(

3541817
43740000

+
7919
12150

ζ(3)− 4
45
ζ(4) +

1
9
ζ(5)

+
399953
729000

`+
1
15
ζ(3)`+

8963
48600

`2 +
22

1215
`3
)
CA

+
(

1303
2430

ζ(3)− 2
3
ζ(5) +

8
45
ζ(4)− 12235087

16402500
− 383653

729000
`

− 362
2025

`2 − 32
1215

`3
)
CF

]
a2

]
+ O(a3) (4.26)

Π̃W3,∂∂W3

(1) (a) = − Π̃W3,∂∂W3

(3) (a)

= d(R)
[
− 2

675
− 1

810
` + CF

[
2

135
ζ(3)− 6971

349920
− 1

243
`

]
a

+ CF

[(
4088713
47239200

− 76
1215

ζ(3) +
7267

2624400
`− 8

405
ζ(3)`+

11
4374

`2
)
TFNf

+
(

682
3645

ζ(3) +
2
81
ζ(5)− 48746669

188956800

− 4051
52488

`+
22
405

ζ(3)`− 121
17496

`2
)
CA

+
(

70
729

ζ(3)− 4
27
ζ(5) +

2236871
94478400

+
187

349920
`

)
CF

]
a2

]
+ O(a3)

Π̃W3,∂∂W3

(2) (a) = Π̃W3,∂∂W3

(4) (a) = O(a3) (4.27)

Π̃∂W3,∂W3

(1) (a) = d(R)
[
− 7

2916
− 1

972
` + CF

[
1
81
ζ(3)− 3643

291600
− 11

4860
`

]
a

+ CF

[(
9796

164025
− 38

729
ζ(3) +

1961
109350

`− 4
243

ζ(3)`+
11

7290
`2
)
TFNf

+
(

1111
7290

ζ(3) +
5

243
ζ(5)− 237541

1312200

− 21901
437400

`+
11
243

ζ(3)`− 121
29160

`2
)
CA

+
(

169
2430

ζ(3)− 10
81
ζ(5) +

54931
3936600

− 461
48600

`− 8
3645

`2
)
CF

]
a2

]
+ O(a3)
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Π̃∂W3,∂W3

(2) (a) = O(a3)

Π̃∂W3,∂W3

(3) (a) = d(R)
[

1003
72900

+
23

4860
` − CF

[
13351

1458000
+

23
405

ζ(3) +
931

24300
`+

4
405

`2
]
a

+ CF

[(
122
405

ζ(3)− 104507
4100625

+
62801
546750

`

+
92

1215
ζ(3)`+

1571
36450

`2 +
16

3645
`3
)
TFNf

+
(

1110523
10935000

− 6731
12150

ζ(3) +
8

135
ζ(4)− 23

243
ζ(5)

− 728341
2187000

`− 109
1215

ζ(3)`− 17761
145800

`2 − 44
3645

`3
)
CA

+
(

51334453
98415000

+
46
81
ζ(5)− 16

135
ζ(4)− 3401

7290
ζ(3) +

91499
243000

`

+
764
6075

`2 +
64

3645
`3
)
CF

]
a2

]
+ O(a3) (4.28)

Π̃∂W3,∂∂W3

(1) (a) = − Π̃∂W3,∂∂W3

(3) (a) =
1
2

Π̃∂∂W3,∂∂W3

(1) (a) = − 1
2

Π̃∂∂W3,∂∂W3

(3) (a)

= d(R)
[
− 7

1458
− 1

486
` − CF

[
59

1944
− 2

81
ζ(3) +

1
162

`

]
a

+ CF

[(
3733
26244

− 76
729

ζ(3) +
11
243

`− 8
243

ζ(3)`+
1

243
`2
)
TFNf

+
(

10
243

ζ(5) +
227
729

ζ(3)− 44615
104976

− 41
324

`+
22
243

ζ(3)`− 11
972

`2
)
CA

+
(

145
2916

+
37
243

ζ(3)− 20
81
ζ(5) +

1
324

`

)
CF

]
a2

]
+ O(a3)

Π̃∂W3,∂∂W3

(2) (a) = Π̃∂W3,∂∂W3

(4) (a) = Π̃∂∂W3,∂∂W3

(2) (a) = Π̃∂∂W3,∂∂W3

(4) (a) = O(a3) (4.29)

γW3,W3

(1) (a) = d(R)

[
1

3780
+

101
59535

CFa+
CF

600112800

[
(19051200ζ(3)− 5588635)CA

+(30839406− 38102400ζ(3))CF + 1443956TFNf
]
a2

]
+O(a3)

γW3,W3

(2) (a) = d(R)

[
− 1

630
− 139

158760
CFa+

CF
800150400

[
(34630242− 63504000ζ(3))CA

+(127008000− 94674835ζ(3))CF − 11046528TFNf
]
a2

]
+O(a3)

γW3,W3

(3) (a) = d(R)

[
13

3780
+

13421
793800

CFa+
CF

2000376000

[
(32330861 + 173577600ζ(3))CA

+(200930804− 347155200ζ(3))CF − 7817764TFNf
]
a2

]
+O(a3)
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γW3,W3

(4) (a) = d(R)

[
− 1

252
− 7649

793800
CFa

+
CF

4000752000

[
(51833522− 393724800ζ(3))CA

+(787449600ζ(3)− 405771337)CF − 24183088TFNf
]
a2

]
+O(a3)

γW3,∂W3

(1) (a) = d(R)

[
− 1

1620
− 41

29160
CFa+

CF
20995200

[
68041CF

−40406CA + 13264TFNf
]
a2

]
+O(a3)

γW3,∂W3

(2) (a) = O(a3)

γW3,∂W3

(3) (a) = d(R)

[
7

1620
+

3121
145800

CFa+
CF

104976000

[
(1527166 + 12441600ζ(3))CA

+(16178419− 24883200ζ(3))CF − 461264TFNf
]
a2

]
+O(a3)

γW3,∂W3

(4) (a) = d(R)

[
− 1

180
− 103

8100
CFa+

CF
1458000

[
(65603− 259200ζ(3))CA

+(518400ζ(3)− 325498)CF − 22612TFNf
]
a2

]
+O(a3)

γW3,∂∂W3

(1) (a) = −γW3,∂∂W3

(3) (a)

= −d(R)

[
1

810
+

13
2916

CFa+
CF

2099520

[
22222CA + 139CF − 7376TFNf

]
a2

]
+O(a3)

γW3,∂∂W3

(2) (a) = γW3,∂∂W3

(4) (a) = O(a3)

γ∂W3,∂W3

(1) (a) = −d(R)

[
1

972
+

11
4860

CFa+
CF

874800

[
3729CA − 4214CF − 1116TFNf

]
a2

]
+O(a3)

γ∂W3,∂W3

(2) (a) = O(a3)

γ∂W3,∂W3

(3) (a) = d(R)

[
23

4860
+

541
24300

CFa+
CF

4374000

[
(73859 + 518400ζ(3))CA

+(667206− 1036800ζ(3))CF − 22036TFNf
]
a2

]
+O(a3)
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γ∂W3,∂W3

(4) (a) = d(R)

[
− 1

180
− 103

8100
CFa+

CF
1458000

[
(65603− 259200ζ(3))CA

+(518400ζ(3)− 325498)CF − 22612TFNf
]
a2

]
+O(a3)

γ∂W3,∂∂W3

(1) (a) = −γ∂W3,∂∂W3

(3) (a) =
1
2
γ∂∂W3,∂∂W3

(1) (a) = −1
2
γ∂∂W3,∂∂W3

(3) (a)

= −d(R)

[
1

486
+

1
162

CFa+
CF

5832

[
89CA − 18CF − 28TFNf

]
a2

]
+O(a3)

γ∂W3,∂∂W3

(2) (a) = γ∂W3,∂∂W3

(4) (a) = γ∂∂W3,∂∂W3

(2) (a) = γ∂∂W3,∂∂W3

(4) (a) = O(a3). (4.30)

4.8 Tensor-transversity 2

ΠT,T2

(i) (q) = (q2)2Π̃T,T2

(i) (a) (4.31)

Π̃T,T2

(1) (a) = d(R)
[

2
9

+
1
3
` + CF

[
491
108
− 4ζ(3) +

7
9
`− 1

3
`2
]
a

+ CF

[(
512
27

ζ(3)− 5336
243

− 383
41

`+
16
3
ζ(3)`+

4
9
`2 +

4
27
`3
)
TFNf

+
(

19427
324

− 1366
27

ζ(3) +
7
3
ζ(4)− 20

3
ζ(5) +

1771
324

`

− 10ζ(3)`− 10
3
`2 − 11

27
`3
)
CA

+
(

15973
1944

− 304
9
ζ(3)− 14

3
ζ(4) + 40ζ(5) +

1075
108

`− 4
3
ζ(3)`

+
1075
108

`+
43
18
`2 +

2
9
`3
)
CF

]
a2

]
+ O(a3) (4.32)

Π̃T,T2

(2) (a) = − 2Π̃T,T2

(3) (a) + O(a3)

= d(R)
[

20
27

+
2
9
` + CF

[
803
162
− 8

3
ζ(3) +

14
27
`− 2

9
`2
]
a

+ CF

[(
1024
81

ζ(3)− 32368
2187

− 766
243

`+
32
9
ζ(3)`+

8
27
`2 +

8
81
`3
)
TFNf

+
(

180043
4374

− 836
27

ζ(3) +
14
9
ζ(4)− 40

9
ζ(5) +

1771
486

`

− 20
3
ζ(3)`− 20

9
`2 − 22

81
`3
)
CA

+
(

9911
972

− 2272
81

ζ(3)− 28
9
ζ(4) +

80
3
ζ(5) +

1075
162

`

− 8
9
ζ(3)`+

43
27
`2 +

4
27
`3
)
CF

]
a2

]
+ O(a3) (4.33)

Π̃T,T2

(4) (a) = + O(a3) (4.34)

Π̃T,∂T2

(i) (a) = 2Π̃T,T2

(i) (a) + O(a3) (4.35)
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γT,T2

(1) (a) = d(R)

[
1
3

+
11
9
CFa +

CF
324

[
(1512ζ(3)− 1574)CA

+ (4803− 3024ζ(3))CF + 16TFNf
]
a2

]
+ O(a3)

γT,T2

(2) (a) = d(R)

[
2
9

+ 2CFa +
CF
486

[
(3218 + 1512ζ(3))CA

+ (1203− 3024ζ(3))CF − 400TFNf
]
a2

]
+ O(a3)

γT,T2

(3) (a) = − d(R)

[
1
9

+ CFa +
CF
972

[
(3218 + 1512ζ(3))CA

+ (1203− 3024ζ(3))CF − 400TFNf
]
a2

]
+ O(a3)

γT,T2

(4) (a) = O(a3)

γT,∂T2

(1) (a) = d(R)

[
2
3

+
22
9
CFa+

CF
162

[
(1512ζ(3)− 1574)CA

+ (4803− 3024ζ(3))CF + 16TFNf
]
a2

]
+ O(a3)

γT,∂T2

(2) (a) = d(R)

[
4
9

+ 4CFa +
CF
243

[
(3218 + 1512ζ(3))CA

+ (1203− 3024ζ(3))CF − 400TFNf
]
a2

]
+ O(a3)

γT,∂T2

(3) (a) = − d(R)

[
2
9

+ 2CFa +
CF
486

[
(3218 + 1512ζ(3))CA

+ (1203− 3024ζ(3))CF − 400TFNf
]
a2

]
+ O(a3)

γT,∂T2

(4) (a) = O(a3) . (4.36)

Finally, we note that in addition to the various checks we have mentioned so far, our
Form code was written in such a way that only the Feynman rules for the operators and
projectors needed to be input. The Mincer integration code and its interface with the
Qgraf set of Feynman diagrams forms the same central block module of the programme.
In this way our approach was designed in order to minimize the potential places where
errors could creep into the overall computer algebra computation. In this respect we have
not in fact derived new Feynman rules for the parent operators V , T , W2, W3 or T2 but
imported those used in the progammes which underlay the results of [21, 22]. For the
remaining total derivative operators it is evident from the consistency, say, in the relations
of their anomalous dimensions with those without the derivatives that their Form Feynman
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rule module is not inconsistent.

5 Tensor current R-ratio

Our final exercise is to derive the R-ratio for the tensor current to complete the evaluation
for all the quark bilinear currents. As for S and V it can simply be derived from the current
correlator by using

RT(i)(a) =
1

2πs
Im
(

ΠT
(i)(−s− iε)

)
(5.1)

where ε indicates the usual shift away from the real axis to avoid ambiguity. Unlike S there
are two Lorentz tensor components and for the moment we assume there are two R-ratios.
The case V has in principle two similar channels but due to gauge symmetry there is no
contribution in the longitudinal piece of the decomposition. With this definition and our
results (4.9) and (4.10) we find

RT(1)(s) = − d(R)
[

1
3

+
(

7
9
− 2

3
¯̀
)
CFa +

((
16
3
ζ(3)− 383

81
− 4

27
π2 +

8
9

¯̀+
4
9

¯̀2
)
CF

+
(

1771
324

− 10ζ(3) +
11
27
π2 − 20

3
¯̀− 11

9
¯̀2
)
CFCA

+
(

1075
108

− 4
3
ζ(3)− 2

9
π2 +

43
9

¯̀+
2
3

¯̀2
)
C2
F

)
a2

]
+ O(a3)

RT(2)(s) = d(R)
[

2
3

+
(

14
9
− 4

3
¯̀
)
CFa +

((
32
3
ζ(3)− 766

81
− 8

27
π2 +

16
9

¯̀+
8
9

¯̀2
)
CF

+
(

1771
162

− 20ζ(3) +
22
27
π2 − 40

3
¯̀− 22

9
¯̀2
)
CFCA

+
(

1075
54
− 8

3
ζ(3)− 4

9
π2 +

86
9

¯̀+
4
3

¯̀2
)
C2
F

)
a2

]
+ O(a3) (5.2)

where
¯̀ = ln

(
µ2

s

)
. (5.3)

From these it is evident to see that there is a simple relationship to three loops between
both channels which is

RT(2)(s) = − 2RT(1)(s) + O(a3) . (5.4)

Whilst the full expressions for (4.9) and (4.10) are different and do not satisfy an analogous
relation, the behaviour of the ` terms do which is the origin for the result (5.4). Conse-
quently, if we now include the Lorentz tensors of the projection basis we can write down
the Lorentz tensor dependence of the R-ratio as one would have derived it directly from
ΠT,T
µ1µ2ν1ν2(q2) if we had not had the problem of focusing on scalar amplitudes in order to

perform the Mincer calculations. Therefore, we have

RTµ1µ2ν1ν2(s) =
[
P̃µ1ν1(q)P̃µ2ν2(q) − P̃µ1ν2(q)P̃µ2ν1(q)

]
RT(1)(s) (5.5)

where we have introduced the common tensor structure

P̃µν(p) = ηµν − 2pµpν

p2
. (5.6)
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The appearance of this tensor structure is akin to that for case V where the longitudinal
piece is absent. Put another way this form would have emerged directly if we had chosen
our Lorentz tensor basis in a more erudite fashion. For completeness, we have numerically
evaluated the amplitude for the colour group SU(3) similar to appendix B. We have

RT(1)(s) = − d(R)
[
0.333333 +

[
1.037037− 0.888888¯̀] a

+
[
0.812771 + 0.146941Nf + (− 18.172840 + 0.592593Nf ) ¯̀

+ (− 3.703704 + 0.296296Nf ) ¯̀2] a2
]

+ O(a3) . (5.7)

For example, to see the convergence behaviour in relation to the expressions for S and V

for three quark flavours when s = µ2 we have

RT(1)(µ
2)
∣∣∣
Nf=3

= − 3
[
0.333333 + 1.037037a + 1.253594a2

]
+ O(a3) . (5.8)

6 Discussion

We conclude with brief remarks since the main goal of the exercise to determine the finite
parts of various operator correlation function to O(a2) in the MS scheme has clearly been
achieved. It extends the work of [26–28]. One novel feature was the need to properly
account for the operator mixing into total derivative operators for the flavour non-singlet
twist-2 operators used in deep inelastic scattering. The mixing matrix has been deduced
for several low moments but to extend these to moments n ≥ 4 for arbitrary n to even two
loops would seem to be excluded at this stage. For instance, the calculational machinery on
a par with Mincer is unfortunately not available. Whilst the main obstacle is the inability
to disentangle the relations between counterterms one way through could be to embed the
operators in higher leg Green’s functions. Whilst this, in principle, will give more relations
between the counterterms there is again the problem of lack of calculational machinery.
Indeed with more legs with independent momenta any nullification of external momenta
has the additional potential problem of introducing spurious infrared singularities. These
would have to be properly treated using, say, infrared rearrangement to be confident in
the correctness of the final counterterm relations. However, since the main problem here
was motivated by the need to provide only low moment flavour non-singlet information for
lattice computations, this is a problem which is left for future consideration.
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A Projectors

In this appendix we record the explicit forms of the tensors into which the various corre-
lation functions are decomposed. For each sector we also record the matrix Mij used to
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project out each individual component of the decomposition. The matrix Mij
kl is derived

by first constructing the matrix N ij
kl where k and l label the projectors, which is defined by

N ij
kl = P ij(k){µ1...µni |ν1...νnj }

(q)P
ij {µ1...µni |ν1...νnj }
(l) (q) (A.1)

where there is no sum over the i and j. The elements of this matrix are polynomials in the
dimension d due to the contraction of the Lorentz indices. Finally, Mij is the inverse of
N ij . OnceMij is specified then to project out, say, the kth piece of the tensor correlation
function, one multiplies it by the projector

nij∑
l=1

Mij
klP

ij
(l){µ1...µni |ν1...νnj }

(q) (A.2)

where there is no sum over the labels {ij}. The method we have used to construct the
tensor basis, which of course is not unique, is to first write down the complete set of tensors
built from the metric, ηµν , and the momentum, qµ, which have the same number of free
indices as the operator correlation function of interest. Each of these independent tensors
is then multiplied by a different label and then the Lorentz symmetry properties of the two
operators in the correlation function are enforced on the sum of all independent tensors.
This provides a set of linear equations for the labels which is fewer in number than the
total number of original labels. Solving these equations reduces the number of independent
labels, and hence independent combinations of the individual tensors, producing the tensor
basis as enumerated in table 1. Therefore, it remains to list the relevant explicit expressions
for the various sectors as:

A.1 Vector-vector

PV,V(1){µ|ν}(q) = ηµν −
qµqν
q2

, PV,V(2){µ|ν}(q) =
qµqν
q2

(A.3)

MV,V =
1

(d− 1)q2

(
1 0
0 d− 1

)
. (A.4)

A.2 Tensor-tensor

PT,T(1){µν|σρ}(q) = ηµσηνρ − ηµρηνσ

PT,T(2){µν|σρ}(q) = ηµσ
qνqρ
q2

− ηµρ
qνqσ
q2

− ηνσ
qµqρ
q2

+ ηνρ
qµqσ
q2

(A.5)

MT,T =
1

4(d− 1)(d− 2)q2

(
2 − 2
− 2 d

)
. (A.6)

A.3 Vector-Wilson 2

PV,W2

(1){µ|σρ}(q) =
[
ηµσqρ + ηµρqσ − 2

qµqρqσ
q2

]
1
q2

– 34 –



J
H
E
P
0
4
(
2
0
0
9
)
1
2
7

PV,W2

(2){µ|σρ}(q) =
[
ησρqµ − d

qµqρqσ
q2

]
1
q2

(A.7)

MV,W2 =
1

2d(d− 1)q2

(
d 0
0 2

)
. (A.8)

A.4 Vector-Wilson 3

PV,W3

(1){µ|σρλ}(q) = ηµσηρλ + ηµρησλ + ηµληρσ

− (d+ 2) [ηµσqρqλ + ηµρqσqλ + ηµλqρqσ]
1
q2

+ 2(d+ 2)
qµqσqρqλ

(q2)2

PV,W3

(2){µ|σρλ}(q) = [ησρqµqλ + ησλqµqρ + ηρλqµqσ]
1
q2
− (d+ 2)

qµqσqρqλ
(q2)2

(A.9)

MV,W3 =
1

3(d− 1)(d− 1)(d+ 1)(q2)2

(
1 − 1
− 1 3d+ 4

)
. (A.10)

A.5 Wilson 2-Wilson 2

PW2,W2

(1){µν|σρ}(q) = ηµσηνρ + ηµρηνσ −
2
d
ηµνησρ

PW2,W2

(2){µν|σρ}(q) = − 1
d
ηµνησρ + [ηµνqσqρ + ησρqµqν ]

1
q2
− d

qµqνqσqρ
(q2)2

PW2,W2

(3){µν|σρ}(q) =
[
ηµσqνqρ + ηµρqνqσ + ηνσqµqρ + ηνρqµqσ − 4

qµqνqσqρ
q2

]
1
q2

(A.11)

MW2,W2 =
1

4(d− 1)(d+ 1)(d− 2)(q2)2

 2(d− 1) 4 − 2(d− 1)
4 4d − 4

− 2(d− 1) − 4 (d2 + d− 4)

 . (A.12)

A.6 Wilson 3-Wilson 3

PW3,W3

(1){µνσ|ρλψ}(q) = ηµνησρηλψ + ηµνησληρψ + ηµνησψηρλ + ηµσηνρηλψ + ηµσηνληρψ

+ ηµσηνψηρλ + ηµρηνσηλψ + ηµληνσηρψ + ηµψηνσηρλ

− (d+ 2)
q2

[ηµνησρqλqψ + ηµνησλqρqψ + ηµνησψqλqρ

+ ηµσηνρqλqψ + ηµσηνλqρqψ + ηµσηνψqλqρ

+ ηµρηνσqλqψ + ηµρηλψqνqσ + ηµληνσqρqψ

+ ηµληρψqνqσ + ηµψηνσqρqλ + ηµψηρλqνqσ

+ ηνρηλψqµqσ + ηνληρψqµqσ + ηνψηρλqµqσ

+ ησρηλψqµqν + ησληρψqµqν + ησψηρλqµqν ]

+
2(d+ 2)

(q2)2
[ηµνqσqρqλqψ + ηµσqνqρqλqψ + ηνσqµqρqλqψ

+ ηρλqµqνqσqψ + ηρψqµqνqσqλ + ηλψqµqνqσqρ]
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+
(d+ 2)2

(q2)2
[ηµρqνqσqλqψ + ηµλqνqσqρqψ + ηµψqνqσqρqλ

+ ηνρqµqσqλqψ + ηνλqµqσqρqψ + ηνψqµqσqρqλ

+ ησρqµqνqλqψ + ησλqµqνqρqψ + ησψqµqνqρqλ]

− 8(d+ 2)2

(q2)3
qµqνqσqρqλqψ

PW3,W3

(2){µνσ|ρλψ}(q) = ηµρηνλησψ + ηµρηνψησλ + ηµληνρησψ

+ ηµληνψησρ + ηµψηνρησλ + ηµψηνλησρ

− 2
q2

[ηµνησρqλqψ + ηµνησλqρqψ + ηµνησψqλqρ

+ ηµσηνρqλqψ + ηµσηνλqρqψ + ηµσηνψqλqρ

+ ηµρηνσqλqψ + ηµρηλψqνqσ + ηµληνσqρqψ

+ ηµληρψqνqσ + ηµψηνσqρqλ + ηµψηρλqνqσ

+ ηνρηλψqµqσ + ηνληρψqµqσ + ηνψηρλqµqσ

+ ησρηλψqµqν + ησληρψqµqν + ησψηρλqµqν ]

+
4

(q2)2
[ηµνqσqρqλqψ + ηµσqνqρqλqψ + ηνσqµqρqλqψ

+ ηρλqµqνqσqψ + ηρψqµqνqσqλ + ηλψqµqνqσqρ]

+
2(d+ 2)

(q2)2
[ηµρqνqσqλqψ + ηµλqνqσqρqψ + ηµψqνqσqρqλ

+ ηνρqµqσqλqψ + ηνλqµqσqρqψ + ηνψqµqσqρqλ

+ ησρqµqνqλqψ + ησλqµqνqρqψ + ησψqµqνqρqλ]

− 16(d+ 2)
(q2)3

qµqνqσqρqλqψ

PW3,W3

(3){µνσ|ρλψ}(q) =
1
q2

[ηµνηρλqσqψ + ηµνηρψqσqλ + ηµνηλψqσqρ

+ ηµσηρλqνqψ + ηµσηρψqνqλ + ηµσηλψqνqρ

+ ηνσηρλqµqψ + ηνσηρψqµqλ + ηνσηλψqµqρ]

− (d+ 2)
(q2)2

[ηµνqσqρqλqψ + ηµσqνqρqλqψ + ηνσqµqρqλqψ

+ ηρλqµqνqσqψ + ηρψqµqνqσqλ + ηλψqµqνqσqρ]

+
(d+ 2)2

(q2)3
qµqνqσqρqλqψ

PW3,W3

(4){µνσ|ρλψ}(q) =
1
q2

[ηµρηνλqσqψ + ηµρηνψqσqλ + ηµρησλqνqψ

+ ηµρησψqνqλ + ηµληνρqσqψ + ηµληνψqσqρ

+ ηµλησρqνqψ + ηµλησψqνqρ + ηµψηνρqσqλ

+ ηµψηνλqσqρ + ηµψησρqνqλ + ηµψησλqνqρ

+ ηνρησλqµqψ + ηνρησψqµqλ + ηνλησρqµqψ

+ ηνλησψqµqρ + ηνψησρqµqλ + ηνψησλqµqρ]
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− 2
(q2)2

[ηµνqσqρqλqψ + ηµσqνqρqλqψ + ηνσqµqρqλqψ

+ ηρλqµqνqσqψ + ηρψqµqνqσqλ + ηλψqµqνqσqρ]

− 4
(q2)2

[ηµρqνqσqλqψ + ηµλqνqσqρqψ + ηµψqνqσqρqλ

+ ηνρqµqσqλqψ + ηνλqµqσqρqψ + ηνψqµqσqρqλ

+ ησρqµqνqλqψ + ησλqµqνqρqψ + ησψqµqνqρqλ]

+
2(d+ 14)

(q2)3
qµqνqσqρqλqψ (A.13)

MW3,W3 =
1

18(d2 − 1)(d− 2)(d+ 2)2(d+ 3)(q2)3

×


2(7d+ 18) − 6(d+ 2)2 − 2(7d+ 18) 6(d+ 2)2

− 6(d+ 2)2 3(d+ 1)(d+ 2)2 6(d+ 2)2 − 3(d+ 1)(d+ 2)2

− 2(7d+ 18) 6(d+ 2)2 2(11d2 + 50d+ 48) − 2(d+ 6)(d+ 2)2

6(d+ 2)2 − 3(d+ 1)(d+ 2)2 − 2(d+ 6)(d+ 2)2 d(d+ 5)(d+ 2)2


(A.14)

A.7 Tensor-transversity 2

PT,T2

(1){µν|σρλ}(q) = ηµσηνρqλ + ηµσηνλqρ − ηµρηνσqλ − ηµληνσqρ

+ [ηµρqνqσqλ + ηµλqνqσqρ − ηνρqµqσqλ − ηνλqµqσqρ

+ 2ηνσqµqρqλ − 2ηµσqνqρqλ]
1
q2

PT,T2

(2){µν|σρλ}(q) = ηµσηρλqν − ηνσηρλqµ

+ [ηνρqµqσqλ + ηνλqµqσqρ − ηµρqνqσqλ − ηµλqνqσqρ

+ dηνσqµqρqλ − dηµσqνqρqλ]
1
q2

PT,T2

(3){µν|σρλ}(q) = ηµρησλqν + ηµλησρqν − ηνρησλqν − ηνλησρqµ

+ [(d+ 1) (ηνρqµqσqλ + ηνλqµqσqρ − ηµρqνqσqλ − ηµλqνqσqρ)

+ 2ηνσqµqρqλ − 2ηµσqνqρqλ]
1
q2

PT,T2

(4){µν|σρλ}(q) = ηµρηνλqσ − ηµληνρqσ

+ [ηνρqµqσqλ + ηνλqµqσqρ − ηµρqνqσqλ − ηµλqνqσqρ]
1
q2

(A.15)

MT,T2 =
1

4d2(d2 − 1)(d− 2)(q2)2


d2(d+ 1) 0 0 0

0 2(d2 + 4) − 4d 4(d− 2)
0 − 4d d2 − 2d(d− 2)
0 4(d− 2) − 2d(d− 2) 2(d− 1)(d2 − 4)

 .

(A.16)
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B Expressions for SU(3)

For completeness and for practical use, we record the explicit numerical values of the
various amplitudes for the colour group SU(3). We take the usual values for the Casimirs,
TF = 1

2 , CA = 3 and CF = 4
3 as well as d(R) = 3 but leave the numbers of quarks unfixed.

We only record those amplitudes which are non-zero. The remaining ones still satisfy the
same relations to third order which were noted in section 4. Thus, we have

B.1 Vector currents

ΠS,S(a) = 3
[
4.000000 + 2.000000` +

[
48.867512 + 45.333333`+ 8.000000`2

]
a

+ [1925.894130− 100.119646Nf + (1650.138715− 61.022786Nf ) `

+ (565.333333− 19.555555Nf ) `2

+ (50.666667− 1.777778Nf ) `3
]
a2
]

+ O(a3)

ΠV,V
(1) (a) = 3 [− 2.222222− 1.333333` + [1.199436− 5.333333`] a

+ [6.784729Nf − 38.534112 + (2.459635Nf − 42.361758) `

+ (1.777778Nf − 29.333333) `2
]
a2
]

+ O(a3)

ΠT,T
(1) (a) = 3

[
− 0.444444− 0.666667` +

[
0.698484− 2.074074`+ 0.888889`2

]
a

+ [27.577316− 1.114284Nf + (22.743851− 2.243433Nf ) `

+ (18.172840− 0.592593Nf ) `2

+ (2.469136− 0.197531Nf ) `3
]
a2
]

+ O(a3)

ΠT,T
(2) (a) = 3

[
2.222222 + 1.333333` +

[
3.640070 + 4.148148`− 1.777778`2

]
a

+ [− 32.988175 + 2.272463Nf + (− 45.487702 + 4.486867Nf ) `

+ (− 36.345679 + 1.185185Nf ) `2

+ (− 4.938272 + 0.395062Nf ) `3
]
a2
]

+ O(a3) (B.1)

B.2 Wilson moment n = 2

ΠW2,W2

(1) (a) = 3
[
0.480000 + 0.200000` +

[
− 5.578236− 2.802963`− 0.711111`2

]
a

+ [− 88.800839 + 11.700261Nf + (− 56.861337 + 7.125112Nf ) `

+ (− 15.116049 + 1.566420Nf ) `2

+ (− 0.921811 + 0.158025Nf ) `3
]
a2
]

+ O(a3)

ΠW2,W2

(2) (a) = 3
[
0.408889 + 0.133333` +

[
− 3.597014− 1.947654`− 0.474074`2

]
a

+ [− 57.728474 + 8.008477Nf + (− 39.368555 + 4.896687Nf ) `

+ (− 10.231001 + 1.070617Nf ) `2

+ (− 0.614540 + 0.105350Nf ) `3
]
a2
]

+ O(a3)

ΠW2,W2

(3) (a) = 3
[
0.075555 + 0.133333` +

[
4.238377 + 3.780741`+ 0.711111`2

]
a

+ [75.027286− 10.992767Nf + (56.696221− 6.724712Nf ) `

+ (21.758025− 1.892346Nf ) `2
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+ (0.921811− 0.158025Nf ) `3
]
a2
]

+ O(a3)

ΠW2,∂W2

(3) (a) = 3 [1.111111 + 0.666667` + [− 0.599718 + 2.666667`] a

+ [19.267056− 3.392365Nf + (21.180879− 1.229818Nf ) `

+ (14.666667− 0.888889Nf ) `2
]
a2
]

+ O(a3) (B.2)

B.3 Wilson moment n = 3

ΠV,W3

(1) (a) = 3 [0.045926 + 0.022222` + [0.020544 + 0.098765`] a

+ [0.917043− 0.131672Nf + (0.838448− 0.047350Nf ) `

+ (0.497942− 0.030178Nf ) `2
]
a2
]

+ O(a3)

ΠV,∂W3

(1) (a) = 3 [0.074074 + 0.037037` + [− 0.008626 + 0.148148`] a

+ [1.211681− 0.196695Nf + (1.176715− 0.068323Nf ) `

+ (0.814815− 0.049383Nf ) `2
]
a2
]

+ O(a3) (B.3)

ΠW3,W3

(1) (a) = 3
[
0.001151 + 0.000265` +

[
− 0.037289− 0.020408`− 0.003527`2

]
a

+ [− 0.344878 + 0.084926Nf + (− 0.203993 + 0.046931Nf ) `

+ (− 0.050228 + 0.009964Nf ) `2

+ (0.000131 + 0.000784Nf ) `3
]
a2
]

+ O(a3)

ΠW3,W3

(2) (a) = 3
[
− 0.004528− 0.001587` +

[
0.100640 + 0.049139`+ 0.008818`2

]
a

+ [1.022184− 0.224027Nf + (0.551061− 0.122691Nf ) `

+ (0.109786− 0.024512Nf ) `2

+ (− 0.000327− 0.001960Nf ) `3
]
a2
]

+ O(a3)

ΠW3,W3

(3) (a) = 3
[
0.010207 + 0.003439` +

[
− 0.069547− 0.035555`− 0.009641`2

]
a

+ [− 1.354970 + 0.153442Nf + (− 0.921737 + 0.095085Nf ) `

+ (− 0.233863 + 0.020396Nf ) `2

+ (− 0.017201 + 0.002143Nf ) `3
]
a2
]

+ O(a3)

ΠW3,W3

(4) (a) = 3
[
− 0.008806− 0.003968` +

[
0.063950 + 0.031660`+ 0.010935`2

]
a

+ [1.580679− 0.124987Nf + (1.078542− 0.084549Nf ) `

+ (0.309941− 0.019979Nf ) `2

+ (0.025932− 0.002430Nf ) `3
]
a2
]

+ O(a3)

ΠW3,∂W3

(1) (a) = 3 [− 0.001481− 0.000617` + [0.002510− 0.001641`] a

+ [0.048778− 0.003811Nf + (0.009906− 0.001818Nf ) `

+ (− 0.011698 + 0.000472Nf ) `2
]
a2
]

+ O(a3)

ΠW3,∂W3

(3) (a) = 3
[
0.012840 + 0.004321` +

[
− 0.102610− 0.052455`− 0.013169`2

]
a

+ [− 1.653254 + 0.226264Nf + (− 1.103477 + 0.137837Nf ) `

+ (− 0.272497 + 0.029267Nf ) `2

+ (− 0.017071 + 0.002926Nf ) `3
]
a2
]

+ O(a3)

ΠW3,∂W3

(4) (a) = 3
[
− 0.013333− 0.005555` +

[
0.154951 + 0.077860`+ 0.019753`2

]
a
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+ [2.466690− 0.325007Nf + (1.579482− 0.197920Nf ) `

+ (0.419890− 0.043512Nf ) `2

+ (0.025606− 0.004390Nf ) `3
]
a2
]

+ O(a3)

ΠW3,∂∂W3

(1) (a) = 3 [− 0.002963− 0.001235` + [− 0.002132− 0.005487`] a

+ [− 0.055664 + 0.007575Nf + (− 0.046580 + 0.002631Nf ) `

+ (− 0.027663 + 0.001677Nf ) `2
]
a2
]

+ O(a3)

Π∂W3,∂W3

(1) (a) = 3 [− 0.002401− 0.001029` + [0.003129− 0.003018`] a

+ [0.039866− 0.001957Nf + (0.000510− 0.001236Nf ) `

+ (− 0.020450 + 0.001006Nf ) `2
]
a2
]

+ O(a3)

Π∂W3,∂W3

(3) (a) = 3
[
0.013759 + 0.004733` +

[
− 0.103229− 0.051084`− 0.013169`2

]
a

+ [− 1.644342 + 0.224410Nf + (− 1.094081 + 0.137255Nf ) `

+ (− 0.263695 + 0.028733Nf ) `2

+ (− 0.017071 + 0.002926Nf ) `3
]
a2
]

+ O(a3)

Π∂W3,∂∂W3

(1) (a) = 3 [− 0.004801− 0.002058` + [− 0.000893− 0.008230`] a

+ [− 0.073488 + 0.011283Nf + (− 0.065373 + 0.003796Nf ) `

+ (− 0.045267 + 0.002743Nf ) `2
]
a2
]

+ O(a3) (B.4)

B.4 Transversity moment n = 2

ΠT,T2

(1) (a) = 3
[
0.222222 + 0.333333` +

[
− 0.349242 + 1.037037`− 0.444444`2

]
a

+ [− 13.788658 + 0.557142Nf + (− 11.371925 + 1.121717Nf ) `

+ (− 9.086420 + 0.296296Nf ) `2

+ (− 1.234568 + 0.098765Nf ) `3
]
a2
]

+ O(a3)

ΠT,T2

(2) (a) = 3
[
0.740741 + 0.222222` +

[
2.335073 + 0.691358`− 0.296296`2

]
a

+ [5.429324 + 0.264127Nf + (− 7.581284 + 0.747811Nf ) `

+ (− 6.057613 + 0.197531Nf ) `2

+ (− 0.823045 + 0.065844Nf ) `3
]
a2
]

+ O(a3) . (B.5)
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